Checks in the mail more effective checks to your pay

Paycheck (film)
Image via Wikipedia

NBER (whose excellent monthly newsletter I subscribe to- among others) http://www.nber.org/ in a recent paper claims that cheque in mails (one time) sare better spent than monthly pay increases.

I wonder what this conclusion can be used for in designing annual bonuses versus higher pay in private sector compensation- but people do seem happier receiving a bigger one time boost than 12 small mini boosts.

 

http://papers.nber.org/papers/w16246

Check in the Mail or More in the Paycheck: Does the Effectiveness of Fiscal Stimulus Depend on How It Is Delivered?

use a mirror
Use a mirror
download in pdf format
(176 K)

email paper

Claudia R. Sahm, Matthew D. Shapiro, Joel Slemrod

NBER Working Paper No. 16246
Issued in July 2010
NBER Program(s):   EFG ME PE

An NBER digest for this paper is available.

Recent fiscal policies have aimed to stimulate household spending. In 2008, most households received one-time economic stimulus payments. In 2009, most working households received the Making Work Pay tax credit in the form of reduced withholding; other households, mainly retirees, received one-time payments. This paper quantifies the spending response to these different policies and examines whether the spending response differed according to whether the stimulus was delivered as a one-time payment or as a flow of payments in the form of reduced withholding. Based on responses from a representative sample of households in the Thomson Reuters/University of Michigan Surveys of Consumers, the paper finds that the reduction in withholding led to a substantially lower rate of spending than the one-time payments. Specifically, 25 percent of households reported that the one-time economic stimulus payment in 2008 led them to mostly increase their spending while only 13 percent reported that the extra pay from the lower withholding in 2009 led them to mostly increase their spending. The paper uses several approaches to isolate the effect of the delivery mechanism from the changing aggregate and individual conditions. Responses to a hypothetical stimulus in 2009, examination of “free responses” concerning differing responses to the policies, and regression analysis controlling for individual economic conditions and demographics all support the primary importance of the income delivery mechanism in determining the spending response to the policies.

This paper is available as PDF (176 K) or via email.

Machine-readable bibliographic record – MARC, RIS, BibTeX

How to balance your online advertising and your offline conscience

Google in 1998, showing the original logo
Image via Wikipedia

I recently found an interesting example of  a website that both makes a lot of money and yet is much more efficient than any free or non profit. It is called ECOSIA

If you see a website that wants to balance administrative costs  plus have a transparent way to make the world better- this is a great example.

  • http://ecosia.org/how.php
  • HOW IT WORKS
    You search with Ecosia.
  • Perhaps you click on an interesting sponsored link.
  • The sponsoring company pays Bing or Yahoo for the click.
  • Bing or Yahoo gives the bigger chunk of that money to Ecosia.
  • Ecosia donates at least 80% of this income to support WWF’s work in the Amazon.
  • If you like what we’re doing, help us spread the word!
  • Key facts about the park:

    • World’s largest tropical forest reserve (38,867 square kilometers, or about the size of Switzerland)
    • Home to about 14% of all amphibian species and roughly 54% of all bird species in the Amazon – not to mention large populations of at least eight threatened species, including the jaguar
    • Includes part of the Guiana Shield containing 25% of world’s remaining tropical rainforests – 80 to 90% of which are still pristine
    • Holds the last major unpolluted water reserves in the Neotropics, containing approximately 20% of all of the Earth’s water
    • One of the last tropical regions on Earth vastly unaltered by humans
    • Significant contributor to climatic regulation via heat absorption and carbon storage

     

    http://ecosia.org/statistics.php

    They claim to have donated 141,529.42 EUR !!!

    http://static.ecosia.org/files/donations.pdf

     

     

     

     

     

     

     

     

     

     

    Well suppose you are the Web Admin of a very popular website like Wikipedia or etc

    One way to meet server costs is to say openly hey i need to balance my costs so i need some money.

    The other way is to use online advertising.

    I started mine with Google Adsense.

    Click per milli (or CPM)  gives you a very low low conversion compared to contacting ad sponsor directly.

    But its a great data experiment-

    as you can monitor which companies are likely to be advertised on your site (assume google knows more about their algols than you will)

    which formats -banner or text or flash have what kind of conversion rates

    what are the expected pay off rates from various keywords or companies (like business intelligence software, predictive analytics software and statistical computing software are similar but have different expected returns (if you remember your eco class)

     

    NOW- Based on above data, you know whats your minimum baseline to expect from a private advertiser than a public, crowd sourced search engine one (like Google or Bing)

    Lets say if you have 100000 views monthly. and assume one out of 1000 page views will lead to a click. Say the advertiser will pay you 1 $ for every 1 click (=1000 impressions)

    Then your expected revenue is $100.But if your clicks are priced at 2.5$ for every click , and your click through rate is now 3 out of 1000 impressions- (both very moderate increases that can done by basic placement optimization of ad type, graphics etc)-your new revenue is  750$.

    Be a good Samaritan- you decide to share some of this with your audience -like 4 Amazon books per month ( or I free Amazon book per week)- That gives you a cost of 200$, and leaves you with some 550$.

    Wait! it doesnt end there- Adam Smith‘s invisible hand moves on .

    You say hmm let me put 100 $ for an annual paper writing contest of $1000, donate $200 to one laptop per child ( or to Amazon rain forests or to Haiti etc etc etc), pay $100 to your upgraded server hosting, and put 350$ in online advertising. say $200 for search engines and $150 for Facebook.

    Woah!

    Month 1 would should see more people  visiting you for the first time. If you have a good return rate (returning visitors as a %, and low bounce rate (visits less than 5 secs)- your traffic should see atleast a 20% jump in new arrivals and 5-10 % in long term arrivals. Ignoring bounces- within  three months you will have one of the following

    1) An interesting case study on statistics on online and social media advertising, tangible motivations for increasing community response , and some good data for study

    2) hopefully better cost management of your server expenses

    3)very hopefully a positive cash flow

     

    you could even set a percentage and share the monthly (or annually is better actions) to your readers and advertisers.

    go ahead- change the world!

    the key paradigms here are sharing your traffic and revenue openly to everyone

    donating to a suitable cause

    helping increase awareness of the suitable cause

    basing fixed percentages rather than absolute numbers to ensure your site and cause are sustained for years.

    2010 in review and WP-Stats

    The following is an auto generated post thanks to WordPress.com stats team- clearly they have got some stuff wrong

    1) Defining the speedometer quantitatively

    2) The busiest day numbers are plain wrong ( 2 views ??)

    3) There is still no geographic data in WordPress -com stats (unlike Google Analytics) and I cant enable Google Analytics on a wordpress.com hosted site.

     

    The stats helper monkeys at WordPress.com mulled over how this blog did in 2010, and here’s a high level summary of its overall blog health:

    Healthy blog!

    The Blog-Health-o-Meter™ reads Wow.

    Crunchy numbers

    Featured image

    The Louvre Museum has 8.5 million visitors per year. This blog was viewed about 97,000 times in 2010. If it were an exhibit at The Louvre Museum, it would take 4 days for that many people to see it.

     

    In 2010, there were 367 new posts, growing the total archive of this blog to 1191 posts. There were 411 pictures uploaded, taking up a total of 121mb. That’s about 1 pictures per day.

    The busiest day of the year was September 22nd with 2 views. The most popular post that day was Top 10 Graphical User Interfaces in Statistical Software.

    Where did they come from?

    The top referring sites in 2010 were r-bloggers.com, reddit.com, rattle.togaware.com, twitter.com, and Google Reader.

    Some visitors came searching, mostly for libre office, facebook analytics, test drive a chrome notebook, test drive a chrome notebook., and wps sas lawsuit.

    Attractions in 2010

    These are the posts and pages that got the most views in 2010.

    1

    Top 10 Graphical User Interfaces in Statistical Software April 2010
    8 comments and 1 Like on WordPress.com,

    2

    Wealth = function (numeracy, memory recall) December 2009
    1 Like on WordPress.com,

    3

    Matlab-Mathematica-R and GPU Computing September 2010
    1 Like on WordPress.com,

    4

    About DecisionStats July 2008

    5

    The Top Statistical Softwares (GUI) May 2010
    1 comment and 1 Like on WordPress.com,

    The Year 2010

    Nokia N800 internet tablet, with open source s...
    Image via Wikipedia

    My annual traffic to this blog was almost 99,000 . Add in additional views on networking sites plus the 400 plus RSS readers- so I can say traffic was 1,20,000 for 2010. Nice. Thanks for reading and hope it was worth your time. (this is a long post and will take almost 440 secs to read but the summary is just given)

    My intent is either to inform you, give something useful or atleast something interesting.

    see below-

    Jan Feb Mar Apr May Jun
    2010 6,311 4,701 4,922 5,463 6,493 4,271
    Jul Aug Sep Oct Nov Dec Total
    5,041 5,403 17,913 16,430 11,723 10,096 98,767

     

     

    Sandro Saita from http://www.dataminingblog.com/ just named me for an award on his blog (but my surname is ohRi , Sandro left me without an R- What would I be without R :)) ).

    Aw! I am touched. Google for “Data Mining Blog” and Sandro is the best that it is in data mining writing.

    DMR People Award 2010
    There are a lot of active people in the field of data mining. You can discuss with them on forums. You can read their blogs. You can also meet them in events such as PAW or KDD. Among the people I follow on a regular basis, I have elected:

    Ajay Ori

    He has been very active in 2010, especially on his blog . Good work Ajay and continue sharing your experience with us!”

    What did I write in 2010- stuff.

    What did you read on this blog- well thats the top posts list.

    2009-12-31 to Today

    Title Views
    Home page More stats 21,150
    Top 10 Graphical User Interfaces in Statistical Software More stats 6,237
    Wealth = function (numeracy, memory recall) More stats 2,014
    Matlab-Mathematica-R and GPU Computing More stats 1,946
    The Top Statistical Softwares (GUI) More stats 1,405
    About DecisionStats More stats 1,352
    Using Facebook Analytics (Updated) More stats 1,313
    Test drive a Chrome notebook. More stats 1,170
    Top ten RRReasons R is bad for you ? More stats 1,157
    Libre Office More stats 1,151
    Interview Hadley Wickham R Project Data Visualization Guru More stats 1,007
    Using Red R- R with a Visual Interface More stats 854
    SAS Institute files first lawsuit against WPS- Episode 1 More stats 790
    Interview Professor John Fox Creator R Commander More stats 764
    R Package Creating More stats 754
    Windows Azure vs Amazon EC2 (and Google Storage) More stats 726
    Norman Nie: R GUI and More More stats 716
    Startups for Geeks More stats 682
    Google Maps – Jet Ski across Pacific Ocean More stats 670
    Not so AWkward after all: R GUI RKWard More stats 579
    Red R 1.8- Pretty GUI More stats 570
    Parallel Programming using R in Windows More stats 569
    R is an epic fail or is it just overhyped More stats 559
    Enterprise Linux rises rapidly:New Report More stats 537
    Rapid Miner- R Extension More stats 518
    Creating a Blog Aggregator for free More stats 504
    So which software is the best analytical software? Sigh- It depends More stats 473
    Revolution R for Linux More stats 465
    John Sall sets JMP 9 free to tango with R More stats 460

    So how do people come here –

    well I guess I owe Tal G for almost 9000 views ( incidentally I withdrew posting my blog from R- Bloggers and Analyticbridge blogs – due to SEO keyword reasons and some spam I was getting see (below))

    http://r-bloggers.com is still the CAT’s whiskers and I read it  a lot.

    I still dont know who linked my blog to a free sex movie site with 400 views but I have a few suspects.

    2009-12-31 to Today

    Referrer Views
    r-bloggers.com 9,131
    Reddit 3,829
    rattle.togaware.com 1,500
    Twitter 1,254
    Google Reader 1,215
    linkedin.com 717
    freesexmovie.irwanaf.com 422
    analyticbridge.com 341
    Google 327
    coolavenues.com 322
    Facebook 317
    kdnuggets.com 298
    dataminingblog.com 278
    en.wordpress.com 185
    google.co.in 151
    xianblog.wordpress.com 130
    inside-r.org 124
    decisionstats.com 119
    ifreestores.com 117
    bits.blogs.nytimes.com 108

    Still reading this post- gosh let me sell you some advertising. It is only $100 a month (yes its a recession)

    Advertisers are treated on First in -Last out (FILO)

    I have been told I am obsessed with SEO , but I dont care much for search engines apart from Google, and yes SEO is an interesting science (they should really re name it GEO or Google Engine Optimization)

    Apparently Hadley Wickham and Donald Farmer are big keywords for me so I should be more respectful I guess.

    Search Terms for 365 days ending 2010-12-31 (Summarized)

    2009-12-31 to Today

    Search Views
    libre office 925
    facebook analytics 798
    test drive a chrome notebook 467
    test drive a chrome notebook. 215
    r gui 203
    data mining 163
    wps sas lawsuit 158
    wordle.net 133
    wps sas 123
    google maps jet ski 123
    test drive chrome notebook 96
    sas wps 89
    sas wps lawsuit 85
    chrome notebook test drive 83
    decision stats 83
    best statistics software 74
    hadley wickham 72
    google maps jetski 72
    libreoffice 70
    doug savage 65
    hive tutorial 58
    funny india 56
    spss certification 52
    donald farmer microsoft 51
    best statistical software 49

    What about outgoing links? Apparently I need to find a way to ask Google to pay me for the free advertising I gave their chrome notebook launch. But since their search engine and browser is free to me, guess we are even steven.

    Clicks for 365 days ending 2010-12-31 (Summarized)

    2009-12-31 to Today

    URL Clicks
    rattle.togaware.com 378
    facebook.com/Decisionstats 355
    rapid-i.com/content/view/182/196 319
    services.google.com/fb/forms/cr48basic 313
    red-r.org 228
    decisionstats.wordpress.com/2010/05/07/the-top-statistical-softwares-gui 199
    teamwpc.co.uk/products/wps 162
    r4stats.com/popularity 148
    r-statistics.com/2010/04/r-and-the-google-summer-of-code-2010-accepted-students-and-projects 138
    socserv.mcmaster.ca/jfox/Misc/Rcmdr 138
    spss.com/certification 116
    learnr.wordpress.com 114
    dudeofdata.com/decisionstats 108
    r-project.org 107
    documentfoundation.org/faq 104
    goo.gl/maps/UISY 100
    inside-r.org/download 96
    en.wikibooks.org/wiki/R_Programming 92
    nytimes.com/external/readwriteweb/2010/12/07/07readwriteweb-report-google-offering-chrome-notebook-test-11919.html 92
    sourceforge.net/apps/mediawiki/rkward/index.php?title=Main_Page 92
    analyticdroid.togaware.com 88
    yeroon.net/ggplot2 87

    so in 2010,

    SAS remained top daddy in business analytics,

    R made revolutionary strides in terms of new packages,

    JMP  launched a new version,

    SPSS got integrated with Cognos,

    Oracle sued Google and did build a great Data Mining GUI,

    Libre Office gave you a non Oracle Open office ( or open even more office)

    2011 looks like  a fun year. Have safe partying .

    Top Cartoonists:Updated

    Here is a list of cartoonists I follow- I sometimes think they make more sense than all the news media combined.

    1) Mike Luckovich He is a Pulitzer Prize winning cartoonist for AJC at http://blogs.ajc.com/mike-luckovich/

    I love his political satire-sometimes not his politics- though he is a liberal (surprisingly most people from creative arts tend to be liberal- guess because they support and need welfare more, 🙂 ) Since I am in India- I call myself a conservative (when filing taxes) or liberal (when drinking er tea)

    2) Hugh Mcleod- of Gaping Void is very different from Mike above, in the way an abstract painter would be from a classical

    artist. I like his satire on internet, technology and personal favorite – social media consultants. Hugh casts a critical eye on the world of tech and is an immensely successful artist- probably the Andy Warhol of this genre in a generation.

    3) Doug Savage of Savage Chickens http://www.savagechickens.com/ has a great series of funny cartoons based on chickens drawn on Post it notes. While his drawing is less abstract than Hugh’s above, he sometimes touches an irreverent note more like Hugh than anyone else.

    4) Professor Jorge Cham of Phd Comics http://www.phdcomics.com/comics.php is probably the most read comic in grad school  – and probably the only cartoonist with a Phd I know of.

    5) Scott Adams of Dilbert http://www.dilbert.com/ is probably the first “non kid stuff” cartoonist I started reading-in fact I once wrote to him asking for advice on my poetry to his credit- he replied with a single ” Best of Luck email”

    They named our email server in Lucknow, UP, India for him (in my business school at http://iiml.ac.in ) Probably the best of corporate toon humor. Maybe they should make the Dilbert movie yet.

    6) Randall Munroe of xkcd.com

    XKCD is geek cartooning at its best.

    For catching up with the best toons in a week, the best is Time.com ‘s weekly list at http://www.time.com/time/cartoonsoftheweek

    It is the best collection of political cartoons.

    Choosing R for business – What to consider?

    A composite of the GNU logo and the OSI logo, ...
    Image via Wikipedia

    Additional features in R over other analytical packages-

    1) Source Code is given to ensure complete custom solution and embedding for a particular application. Open source code has an advantage that is extensively peer- reviewed in Journals and Scientific Literature.  This means bugs will found, shared and corrected transparently.

    2) Wide literature of training material in the form of books is available for the R analytical platform.

    3) Extensively the best data visualization tools in analytical software (apart from Tableau Software ‘s latest version). The extensive data visualization available in R is of the form a variety of customizable graphs, as well as animation. The principal reason third-party software initially started creating interfaces to R is because the graphical library of packages in R is more advanced as well as rapidly getting more features by the day.

    4) Free in upfront license cost for academics and thus budget friendly for small and large analytical teams.

    5) Flexible programming for your data environment. This includes having packages that ensure compatibility with Java, Python and C++.

     

    6) Easy migration from other analytical platforms to R Platform. It is relatively easy for a non R platform user to migrate to R platform and there is no danger of vendor lock-in due to the GPL nature of source code and open community.

    Statistics are numbers that tell (descriptive), advise ( prescriptive) or forecast (predictive). Analytics is a decision-making help tool. Analytics on which no decision is to be made or is being considered can be classified as purely statistical and non analytical. Thus ease of making a correct decision separates a good analytical platform from a not so good analytical platform. The distinction is likely to be disputed by people of either background- and business analysis requires more emphasis on how practical or actionable the results are and less emphasis on the statistical metrics in a particular data analysis task. I believe one clear reason between business analytics is different from statistical analysis is the cost of perfect information (data costs in real world) and the opportunity cost of delayed and distorted decision-making.

    Specific to the following domains R has the following costs and benefits

    • Business Analytics
      • R is free per license and for download
      • It is one of the few analytical platforms that work on Mac OS
      • It’s results are credibly established in both journals like Journal of Statistical Software and in the work at LinkedIn, Google and Facebook’s analytical teams.
      • It has open source code for customization as per GPL
      • It also has a flexible option for commercial vendors like Revolution Analytics (who support 64 bit windows) as well as bigger datasets
      • It has interfaces from almost all other analytical software including SAS,SPSS, JMP, Oracle Data Mining, Rapid Miner. Existing license holders can thus invoke and use R from within these software
      • Huge library of packages for regression, time series, finance and modeling
      • High quality data visualization packages
      • Data Mining
        • R as a computing platform is better suited to the needs of data mining as it has a vast array of packages covering standard regression, decision trees, association rules, cluster analysis, machine learning, neural networks as well as exotic specialized algorithms like those based on chaos models.
        • Flexibility in tweaking a standard algorithm by seeing the source code
        • The RATTLE GUI remains the standard GUI for Data Miners using R. It was created and developed in Australia.
        • Business Dashboards and Reporting
        • Business Dashboards and Reporting are an essential piece of Business Intelligence and Decision making systems in organizations. R offers data visualization through GGPLOT, and GUI like Deducer and Red-R can help even non R users create a metrics dashboard
          • For online Dashboards- R has packages like RWeb, RServe and R Apache- which in combination with data visualization packages offer powerful dashboard capabilities.
          • R can be combined with MS Excel using the R Excel package – to enable R capabilities to be imported within Excel. Thus a MS Excel user with no knowledge of R can use the GUI within the R Excel plug-in to use powerful graphical and statistical capabilities.

    Additional factors to consider in your R installation-

    There are some more choices awaiting you now-
    1) Licensing Choices-Academic Version or Free Version or Enterprise Version of R

    2) Operating System Choices-Which Operating System to choose from? Unix, Windows or Mac OS.

    3) Operating system sub choice- 32- bit or 64 bit.

    4) Hardware choices-Cost -benefit trade-offs for additional hardware for R. Choices between local ,cluster and cloud computing.

    5) Interface choices-Command Line versus GUI? Which GUI to choose as the default start-up option?

    6) Software component choice- Which packages to install? There are almost 3000 packages, some of them are complimentary, some are dependent on each other, and almost all are free.

    7) Additional Software choices- Which additional software do you need to achieve maximum accuracy, robustness and speed of computing- and how to use existing legacy software and hardware for best complementary results with R.

    1) Licensing Choices-
    You can choose between two kinds of R installations – one is free and open source from http://r-project.org The other R installation is commercial and is offered by many vendors including Revolution Analytics. However there are other commercial vendors too.

    Commercial Vendors of R Language Products-
    1) Revolution Analytics http://www.revolutionanalytics.com/
    2) XL Solutions- http://www.experience-rplus.com/
    3) Information Builder – Webfocus RStat -Rattle GUI http://www.informationbuilders.com/products/webfocus/PredictiveModeling.html
    4) Blue Reference- Inference for R http://inferenceforr.com/default.aspx

    1. Choosing Operating System
        1. Windows

     

    Windows remains the most widely used operating system on this planet. If you are experienced in Windows based computing and are active on analytical projects- it would not make sense for you to move to other operating systems. This is also based on the fact that compatibility problems are minimum for Microsoft Windows and the help is extensively documented. However there may be some R packages that would not function well under Windows- if that happens a multiple operating system is your next option.

          1. Enterprise R from Revolution Analytics- Enterprise R from Revolution Analytics has a complete R Development environment for Windows including the use of code snippets to make programming faster. Revolution is also expected to make a GUI available by 2011. Revolution Analytics claims several enhancements for it’s version of R including the use of optimized libraries for faster performance.
        1. MacOS

     

    Reasons for choosing MacOS remains its considerable appeal in aesthetically designed software- but MacOS is not a standard Operating system for enterprise systems as well as statistical computing. However open source R claims to be quite optimized and it can be used for existing Mac users. However there seem to be no commercially available versions of R available as of now for this operating system.

        1. Linux

     

          1. Ubuntu
          2. Red Hat Enterprise Linux
          3. Other versions of Linux

     

    Linux is considered a preferred operating system by R users due to it having the same open source credentials-much better fit for all R packages and it’s customizability for big data analytics.

    Ubuntu Linux is recommended for people making the transition to Linux for the first time. Ubuntu Linux had an marketing agreement with revolution Analytics for an earlier version of Ubuntu- and many R packages can  installed in a straightforward way as Ubuntu/Debian packages are available. Red Hat Enterprise Linux is officially supported by Revolution Analytics for it’s enterprise module. Other versions of Linux popular are Open SUSE.

        1. Multiple operating systems-
          1. Virtualization vs Dual Boot-

     

    You can also choose between having a VMware VM Player for a virtual partition on your computers that is dedicated to R based computing or having operating system choice at the startup or booting of your computer. A software program called wubi helps with the dual installation of Linux and Windows.

    1. 64 bit vs 32 bit – Given a choice between 32 bit versus 64 bit versions of the same operating system like Linux Ubuntu, the 64 bit version would speed up processing by an approximate factor of 2. However you need to check whether your current hardware can support 64 bit operating systems and if so- you may want to ask your Information Technology manager to upgrade atleast some operating systems in your analytics work environment to 64 bit operating systems.

     

    1. Hardware choices- At the time of writing this book, the dominant computing paradigm is workstation computing followed by server-client computing. However with the introduction of cloud computing, netbooks, tablet PCs, hardware choices are much more flexible in 2011 than just a couple of years back.

    Hardware costs are a significant cost to an analytics environment and are also  remarkably depreciated over a short period of time. You may thus examine your legacy hardware, and your future analytical computing needs- and accordingly decide between the various hardware options available for R.
    Unlike other analytical software which can charge by number of processors, or server pricing being higher than workstation pricing and grid computing pricing extremely high if available- R is well suited for all kinds of hardware environment with flexible costs. Given the fact that R is memory intensive (it limits the size of data analyzed to the RAM size of the machine unless special formats and /or chunking is used)- it depends on size of datasets used and number of concurrent users analyzing the dataset. Thus the defining issue is not R but size of the data being analyzed.

      1. Local Computing- This is meant to denote when the software is installed locally. For big data the data to be analyzed would be stored in the form of databases.
        1. Server version- Revolution Analytics has differential pricing for server -client versions but for the open source version it is free and the same for Server or Workstation versions.
        2. Workstation
      2. Cloud Computing- Cloud computing is defined as the delivery of data, processing, systems via remote computers. It is similar to server-client computing but the remote server (also called cloud) has flexible computing in terms of number of processors, memory, and data storage. Cloud computing in the form of public cloud enables people to do analytical tasks on massive datasets without investing in permanent hardware or software as most public clouds are priced on pay per usage. The biggest cloud computing provider is Amazon and many other vendors provide services on top of it. Google is also coming for data storage in the form of clouds (Google Storage), as well as using machine learning in the form of API (Google Prediction API)
        1. Amazon
        2. Google
        3. Cluster-Grid Computing/Parallel processing- In order to build a cluster, you would need the RMpi and the SNOW packages, among other packages that help with parallel processing.
      3. How much resources
        1. RAM-Hard Disk-Processors- for workstation computing
        2. Instances or API calls for cloud computing
    1. Interface Choices
      1. Command Line
      2. GUI
      3. Web Interfaces
    2. Software Component Choices
      1. R dependencies
      2. Packages to install
      3. Recommended Packages
    3. Additional software choices
      1. Additional legacy software
      2. Optimizing your R based computing
      3. Code Editors
        1. Code Analyzers
        2. Libraries to speed up R

    citation-  R Development Core Team (2010). R: A language and environment for statistical computing. R Foundation for Statistical Computing,Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org.

    (Note- this is a draft in progress)

    Chinese Fortune Cookies

    An out-ward or right-ward shift in supply redu...
    Image via Wikipedia

    Source-http://www.usnews.com/usnews/images/cartoons/050110_editorial.jpg

    In a world of experts-some questions to ask about China’s foreign policy , trade and military convergence

    1) How can an increasingly rich 1.2 billion people accept a restricted internet, one child policies, and severe political restrictions/

    2) How long can the Chinese respect for elders and ancestors be translated to a respect for the communist government? How do you measure the level of satisfaction?

    3) Can ambitious Chinese Mandarins be motivated by career motives to act tougher than the country’s national interest demands?

    4) Rare earth demand and supply curves? Clean energy investments versus climate change commitments graph?

    5)Military- Metrics like Chinese Air Force flying hours per pilot, or submarine activity per annum?

    As the Chinese supposedly said- May you live in interesting times