Hacker Alert- Darpa project 10$ K for summer

If you bleed red,white and blue and know some geo-spatial analysis ,social network analysis and some supervised and unsupervised learning (and unlearning)- here is a chance for you to put your skills for an awesome project

 

from wired-

http://www.wired.com/dangerroom/2012/07/hackathon-guinea-pig/

 

For this challenge, Darpa will lodge a selected six to eight teams at George Mason University and provide them with an initial $10,000 for equipment and access to unclassified data sets including “ground-level video of human activity in both urban and rural environments; high-resolution wide-area LiDAR of urban and mountainous terrain, wide-area airborne full motion video; and unstructured amateur photos and videos, such as would be taken from an adversary’s cell phone.” However, participants are encouraged to use any open sourced, legal data sets they want. (In the hackathon spirit, we would encourage the consumption of massive quantities of pizza and Red Bull, too.)

 

DARPA Innovation House Project

Home | Data Access | Awards | Team Composition | Logisitics | Deliverables | Proposals | Evaluation Criteria | FAQ

PROPOSAL SUBMISSION

Proposals must be one to three pages. Team resumes of any length must be attached and do not count against the page limit. Proposals must have 1-inch margins, use a font size of at least 11, and be delivered in Microsoft Word or Adobe PDF format.

Proposals must be emailed to InnovationHouse@c4i.gmu.edu by 4:00PM ET on Tuesday, July 31, 2012.

Proposals must have a Title and contain at least the following sections with the following contents.

  1. Team Members

Each team member must be listed with name, email and phone.
The Lead Developer should be indicated.
The statement “All team members are proposed as Key Personnel.” must be included.

  1. Capability Description

The description should clearly explain what capability the software is designed to provide the user, how it is proposed to work, and what data it will process.

In addition, a clear argument should be made as to why it is a novel approach that is not incremental to existing methods in the field.

  1. Proposed Phase 1 Demonstration

This section should clearly explain what will be demonstrated at the end of Session I. The description should be expressive, and as concrete as possible about the nature of the designs and software the team intends to produce in Session I.

  1. Proposed Phase 2 Demonstration

This section should clearly explain how the final software capability will be demonstrated as quantitatively as possible (for example, positing the amount of data that will be processed during the demonstration), how much time that will take, and the nature of the results the processing aims to achieve.

In addition, the following sections are optional.

  1. Technical Approach

The technical approach section amplifies the Capability Description, explaining proposed algorithms, coding practices, architectural designs and/or other technical details.

  1. Team Qualifications

Team qualifications should be included if the team?s experience base does not make it obvious that it has the potential to do this level of software development. In that case, this section should make a credible argument as to why the team should be considered to have a reasonable chance of completing its goals, especially under the tight timelines described.

Other sections may be included at the proposers? discretion, provided the proposal does not exceed three pages.

[Top]

 

http://www.darpa.mil/NewsEvents/Releases/2012/07/10.aspx

 

 

 

Book Review- Machine Learning for Hackers

This is review of the fashionably named book Machine Learning for Hackers by Drew Conway and John Myles White (O’Reilly ). The book is about hacking code in R.

 

The preface introduces the reader to the authors conception of what machine learning and hacking is all about. If the name of the book was machine learning for business analytsts or data miners, I am sure the content would have been unchanged though the popularity (and ambiguity) of the word hacker can often substitute for its usefulness. Indeed the many wise and learned Professors of statistics departments through out the civilized world would be mildly surprised and bemused by their day to day activities as hacking or teaching hackers. The book follows a case study and example based approach and uses the GGPLOT2 package within R programming almost to the point of ignoring any other native graphics system based in R. It can be quite useful for the aspiring reader who wishes to understand and join the booming market for skilled talent in statistical computing.

Chapter 1 has a very useful set of functions for data cleansing and formatting. It walks you through the basics of formatting based on dates and conditions, missing value and outlier treatment and using ggplot package in R for graphical analysis. The case study used is an Infochimps dataset with 60,000 recordings of UFO sightings. The case study is lucid, and done at a extremely helpful pace illustrating the powerful and flexible nature of R functions that can be used for data cleansing.The chapter mentions text editors and IDEs but fails to list them in a tabular format, while listing several other tables like Packages used in the book. It also jumps straight from installation instructions to functions in R without getting into the various kinds of data types within R or specifying where these can be referenced from. It thus assumes a higher level of basic programming understanding for the reader than the average R book.

Chapter 2 discusses data exploration, and has a very clear set of diagrams that explain the various data summary operations that are performed routinely. This is an innovative approach and will help students or newcomers to the field of data analysis. It introduces the reader to type determination functions, as well different kinds of encoding. The introduction to creating functions is quite elegant and simple , and numerical summary methods are explained adequately. While the chapter explains data exploration with the help of various histogram options in ggplot2 , it fails to create a more generic framework for data exploration or rules to assist the reader in visual data exploration in non standard data situations. While the examples are very helpful for a reader , there needs to be slightly more depth to step out of the example and into a framework for visual data exploration (or references for the same). A couple of case studies however elaborately explained cannot do justice to the vast field of data exploration and especially visual data exploration.

Chapter 3 discussed binary classification for the specific purpose for spam filtering using a dataset from SpamAssassin. It introduces the reader to the naïve Bayes classifier and the principles of text mining suing the tm package in R. Some of the example codes could have been better commented for easier readability in the book. Overall it is quite a easy tutorial for creating a naïve Bayes classifier even for beginners.

Chapter 4 discusses the issues in importance ranking and creating recommendation systems specifically in the case of ordering email messages into important and not important. It introduces the useful grepl, gsub, strsplit, strptime ,difftime and strtrim functions for parsing data. The chapter further introduces the reader to the concept of log (and affine) transformations in a lucid and clear way that can help even beginners learn this powerful transformation concept. Again the coding within this chapter is sparsely commented which can cause difficulties to people not used to learn reams of code. ( it may have been part of the code attached with the book, but I am reading an electronic book and I did not find an easy way to go back and forth between the code and the book). The readability of the chapters would be further enhanced by the use of flow charts explaining the path and process followed than overtly verbose textual descriptions running into multiple pages. The chapters are quite clearly written, but a helpful visual summary can help in both revising the concepts and elucidate the approach taken further.A suggestion for the authors could be to compile the list of useful functions they introduce in this book as a sort of reference card (or Ref Card) for R Hackers or atleast have a chapter wise summary of functions, datasets and packages used.

Chapter 5 discusses linear regression , and it is a surprising and not very good explanation of regression theory in the introduction to regression. However the chapter makes up in practical example what it oversimplifies in theory. The chapter on regression is not the finest chapter written in this otherwise excellent book. Part of this is because of relative lack of organization- correlation is explained after linear regression is explained. Once again the lack of a function summary and a process flow diagram hinders readability and a separate section on regression metrics that help make a regression result good or not so good could be a welcome addition. Functions introduced include lm.

Chapter 6 showcases Generalized Additive Model (GAM) and Polynomial Regression, including an introduction to singularity and of over-fitting. Functions included in this chapter are transform, and poly while the package glmnet is also used here. The chapter also introduces the reader formally to the concept of cross validation (though examples of cross validation had been introduced in earlier chapters) and regularization. Logistic regression is also introduced at the end in this chapter.

Chapter 7 is about optimization. It describes error metric in a very easy to understand way. It creates a grid by using nested loops for various values of intercept and slope of a regression equation and computing the sum of square of errors. It then describes the optim function in detail including how it works and it’s various parameters. It introduces the curve function. The chapter then describes ridge regression including definition and hyperparameter lamda. The use of optim function to optimize the error in regression is useful learning for the aspiring hacker. Lastly it describes a case study of breaking codes using the simplistic Caesar cipher, a lexical database and the Metropolis method. Functions introduced in this chapter include .Machine$double.eps .

Chapter 8 deals with Principal Component Analysis and unsupervised learning. It uses the ymd function from lubridate package to convert string to date objects, and the cast function from reshape package to further manipulate the structure of data. Using the princomp functions enables PCA in R.The case study creates a stock market index and compares the results with the Dow Jones index.

Chapter 9 deals with Multidimensional Scaling as well as clustering US senators on the basis of similarity in voting records on legislation .It showcases matrix multiplication using %*% and also the dist function to compute distance matrix.

Chapter 10 has the subject of K Nearest Neighbors for recommendation systems. Packages used include class ,reshape and and functions used include cor, function and log. It also demonstrates creating a custom kNN function for calculating Euclidean distance between center of centroids and data. The case study used is the R package recommendation contest on Kaggle. Overall a simplistic introduction to creating a recommendation system using K nearest neighbors, without getting into any of the prepackaged packages within R that deal with association analysis , clustering or recommendation systems.

Chapter 11 introduces the reader to social network analysis (and elements of graph theory) using the example of Erdos Number as an interesting example of social networks of mathematicians. The example of Social Graph API by Google for hacking are quite new and intriguing (though a bit obsolete by changes, and should be rectified in either the errata or next edition) . However there exists packages within R that should be atleast referenced or used within this chapter (like TwitteR package that use the Twitter API and ROauth package for other social networks). Packages used within this chapter include Rcurl, RJSONIO, and igraph packages of R and functions used include rbind and ifelse. It also introduces the reader to the advanced software Gephi. The last example is to build a recommendation engine for whom to follow in Twitter using R.

Chapter 12 is about model comparison and introduces the concept of Support Vector Machines. It uses the package e1071 and shows the svm function. It also introduces the concept of tuning hyper parameters within default algorithms . A small problem in understanding the concepts is the misalignment of diagram pages with the relevant code. It lastly concludes with using mean square error as a method for comparing models built with different algorithms.

 

Overall the book is a welcome addition in the library of books based on R programming language, and the refreshing nature of the flow of material and the practicality of it’s case studies make this a recommended addition to both academic and corporate business analysts trying to derive insights by hacking lots of heterogeneous data.

Have a look for yourself at-
http://shop.oreilly.com/product/0636920018483.do

Random Sampling a Dataset in R

A common example in business  analytics data is to take a random sample of a very large dataset, to test your analytics code. Note most business analytics datasets are data.frame ( records as rows and variables as columns)  in structure or database bound.This is partly due to a legacy of traditional analytics software.

Here is how we do it in R-

• Refering to parts of data.frame rather than whole dataset.

Using square brackets to reference variable columns and rows

The notation dataset[i,k] refers to element in the ith row and jth column.

The notation dataset[i,] refers to all elements in the ith row .or a record for a data.frame

The notation dataset[,j] refers to all elements in the jth column- or a variable for a data.frame.

For a data.frame dataset

> nrow(dataset) #This gives number of rows

> ncol(dataset) #This gives number of columns

An example for corelation between only a few variables in a data.frame.

> cor(dataset1[,4:6])

Splitting a dataset into test and control.

ts.test=dataset2[1:200] #First 200 rows

ts.control=dataset2[201:275] #Next 75 rows

• Sampling

Random sampling enables us to work on a smaller size of the whole dataset.

use sample to create a random permutation of the vector x.

Suppose we want to take a 5% sample of a data frame with no replacement.

Let us create a dataset ajay of random numbers

ajay=matrix( round(rnorm(200, 5,15)), ncol=10)

#This is the kind of code line that frightens most MBAs!!

Note we use the round function to round off values.

ajay=as.data.frame(ajay)

 nrow(ajay)

[1] 20

> ncol(ajay)

[1] 10

This is a typical business data scenario when we want to select only a few records to do our analysis (or test our code), but have all the columns for those records. Let  us assume we want to sample only 5% of the whole data so we can run our code on it

Then the number of rows in the new object will be 0.05*nrow(ajay).That will be the size of the sample.

The new object can be referenced to choose only a sample of all rows in original object using the size parameter.

We also use the replace=FALSE or F , to not the same row again and again. The new_rows is thus a 5% sample of the existing rows.

Then using the square backets and ajay[new_rows,] to get-

b=ajay[sample(nrow(ajay),replace=F,size=0.05*nrow(ajay)),]

 

You can change the percentage from 5 % to whatever you want accordingly.

Google Dart a new programming language for web applications

From Google a new language for structured web applications-

http://www.dartlang.org/docs/technical-overview/index.html ( a rather unstructured website, if I may add)

Dart is a new class-based programming language for creating structured web applications. Developed with the goals of simplicity, efficiency, and scalability, the Dart language combines powerful new language features with familiar language constructs into a clear, readable syntax.

  • structured yet flexible programming language for the web.
  • Make Dart feel familiar and natural to programmers and thus easy to learn.
  • Ensure that all Dart language constructs allow high performance and fast application startup.
  • Make Dart appropriate for the full range of devices on the web—including phones, tablets, laptops, and servers.
  • Provide tools that make Dart run fast across all major modern browsers.

These design goals address the following problems currently facing web developers:

  • Small scripts often evolve into large web applications with no apparent structure—they’re hard to debug and difficult to maintain. In addition, these monolithic apps can’t be split up so that different teams can work on them independently. It’s difficult to be productive when a web application gets large.
  • Scripting languages are popular because their lightweight nature makes it easy to write code quickly. Generally, the contracts with other parts of an application are conveyed in comments rather than in the language structure itself. As a result, it’s difficult for someone other than the author to read and maintain a particular piece of code.
  • With existing languages, the developer is forced to make a choice between static and dynamic languages. Traditional static languages require heavyweight toolchains and a coding style that can feel inflexible and overly constrained.
  • Developers have not been able to create homogeneous systems that encompass both client and server, except for a few cases such as Node.js and Google Web Toolkit (GWT).
  • Different languages and formats entail context switches that are cumbersome and add complexity to the coding process.

Interview Dan Steinberg Founder Salford Systems

Here is an interview with Dan Steinberg, Founder and President of Salford Systems (http://www.salford-systems.com/ )

Ajay- Describe your journey from academia to technology entrepreneurship. What are the key milestones or turning points that you remember.

 Dan- When I was in graduate school studying econometrics at Harvard,  a number of distinguished professors at Harvard (and MIT) were actively involved in substantial real world activities.  Professors that I interacted with, or studied with, or whose software I used became involved in the creation of such companies as Sun Microsystems, Data Resources, Inc. or were heavily involved in business consulting through their own companies or other influential consultants.  Some not involved in private sector consulting took on substantial roles in government such as membership on the President’s Council of Economic Advisors. The atmosphere was one that encouraged free movement between academia and the private sector so the idea of forming a consulting and software company was quite natural and did not seem in any way inconsistent with being devoted to the advancement of science.

 Ajay- What are the latest products by Salford Systems? Any future product plans or modification to work on Big Data analytics, mobile computing and cloud computing.

 Dan- Our central set of data mining technologies are CART, MARS, TreeNet, RandomForests, and PRIM, and we have always maintained feature rich logistic regression and linear regression modules. In our latest release scheduled for January 2012 we will be including a new data mining approach to linear and logistic regression allowing for the rapid processing of massive numbers of predictors (e.g., one million columns), with powerful predictor selection and coefficient shrinkage. The new methods allow not only classic techniques such as ridge and lasso regression, but also sub-lasso model sizes. Clear tradeoff diagrams between model complexity (number of predictors) and predictive accuracy allow the modeler to select an ideal balance suitable for their requirements.

The new version of our data mining suite, Salford Predictive Modeler (SPM), also includes two important extensions to the boosted tree technology at the heart of TreeNet.  The first, Importance Sampled learning Ensembles (ISLE), is used for the compression of TreeNet tree ensembles. Starting with, say, a 1,000 tree ensemble, the ISLE compression might well reduce this down to 200 reweighted trees. Such compression will be valuable when models need to be executed in real time. The compression rate is always under the modeler’s control, meaning that if a deployed model may only contain, say, 30 trees, then the compression will deliver an optimal 30-tree weighted ensemble. Needless to say, compression of tree ensembles should be expected to be lossy and how much accuracy is lost when extreme compression is desired will vary from case to case. Prior to ISLE, practitioners have simply truncated the ensemble to the maximum allowable size.  The new methodology will substantially outperform truncation.

The second major advance is RULEFIT, a rule extraction engine that starts with a TreeNet model and decomposes it into the most interesting and predictive rules. RULEFIT is also a tree ensemble post-processor and offers the possibility of improving on the original TreeNet predictive performance. One can think of the rule extraction as an alternative way to explain and interpret an otherwise complex multi-tree model. The rules extracted are similar conceptually to the terminal nodes of a CART tree but the various rules will not refer to mutually exclusive regions of the data.

 Ajay- You have led teams that have won multiple data mining competitions. What are some of your favorite techniques or approaches to a data mining problem.

 Dan- We only enter competitions involving problems for which our technology is suitable, generally, classification and regression. In these areas, we are  partial to TreeNet because it is such a capable and robust learning machine. However, we always find great value in analyzing many aspects of a data set with CART, especially when we require a compact and easy to understand story about the data. CART is exceptionally well suited to the discovery of errors in data, often revealing errors created by the competition organizers themselves. More than once, our reports of data problems have been responsible for the competition organizer’s decision to issue a corrected version of the data and we have been the only group to discover the problem.

In general, tackling a data mining competition is no different than tackling any analytical challenge. You must start with a solid conceptual grasp of the problem and the actual objectives, and the nature and limitations of the data. Following that comes feature extraction, the selection of a modeling strategy (or strategies), and then extensive experimentation to learn what works best.

 Ajay- I know you have created your own software. But are there other software that you use or liked to use?

 Dan- For analytics we frequently test open source software to make sure that our tools will in fact deliver the superior performance we advertise. In general, if a problem clearly requires technology other than that offered by Salford, we advise clients to seek other consultants expert in that other technology.

 Ajay- Your software is installed at 3500 sites including 400 universities as per http://www.salford-systems.com/company/aboutus/index.html What is the key to managing and keeping so many customers happy?

 Dan- First, we have taken great pains to make our software reliable and we make every effort  to avoid problems related to bugs.  Our testing procedures are extensive and we have experts dedicated to stress-testing software . Second, our interface is designed to be natural, intuitive, and easy to use, so the challenges to the new user are minimized. Also, clear documentation, help files, and training videos round out how we allow the user to look after themselves. Should a client need to contact us we try to achieve 24-hour turn around on tech support issues and monitor all tech support activity to ensure timeliness, accuracy, and helpfulness of our responses. WebEx/GotoMeeting and other internet based contact permit real time interaction.

 Ajay- What do you do to relax and unwind?

 Dan- I am in the gym almost every day combining weight and cardio training. No matter how tired I am before the workout I always come out energized so locating a good gym during my extensive travels is a must. I am also actively learning Portuguese so I look to watch a Brazilian TV show or Portuguese dubbed movie when I have time; I almost never watch any form of video unless it is available in Portuguese.

 Biography-

http://www.salford-systems.com/blog/dan-steinberg.html

Dan Steinberg, President and Founder of Salford Systems, is a well-respected member of the statistics and econometrics communities. In 1992, he developed the first PC-based implementation of the original CART procedure, working in concert with Leo Breiman, Richard Olshen, Charles Stone and Jerome Friedman. In addition, he has provided consulting services on a number of biomedical and market research projects, which have sparked further innovations in the CART program and methodology.

Dr. Steinberg received his Ph.D. in Economics from Harvard University, and has given full day presentations on data mining for the American Marketing Association, the Direct Marketing Association and the American Statistical Association. After earning a PhD in Econometrics at Harvard Steinberg began his professional career as a Member of the Technical Staff at Bell Labs, Murray Hill, and then as Assistant Professor of Economics at the University of California, San Diego. A book he co-authored on Classification and Regression Trees was awarded the 1999 Nikkei Quality Control Literature Prize in Japan for excellence in statistical literature promoting the improvement of industrial quality control and management.

His consulting experience at Salford Systems has included complex modeling projects for major banks worldwide, including Citibank, Chase, American Express, Credit Suisse, and has included projects in Europe, Australia, New Zealand, Malaysia, Korea, Japan and Brazil. Steinberg led the teams that won first place awards in the KDDCup 2000, and the 2002 Duke/TeraData Churn modeling competition, and the teams that won awards in the PAKDD competitions of 2006 and 2007. He has published papers in economics, econometrics, computer science journals, and contributes actively to the ongoing research and development at Salford.

Ah! The Internet.

On the Internet I am not brown or black or white. I am Anonymous and yet myself. I am free to choose  whatever identity I wish to choose, free to drink from whatever pools of knowledge my local government wishes to forbid. The Internet does not care about how rich or poor I may be. It has ways to track exactly where I am, but it has tools to disguise that as well. On the internet the strongest government, the richest corporation and the deepest pockets can tremble before the bits and bytes of a talented and motivated hacker working from his basement in his parents house.
There are no losers on the Internet: only winners. Except for those who seek to covet and control the uncontrollable- the human desire to seek knowledge beyond the confines of whatever cave they may find themselves borne in.
There are no countries to wage war on the Internet: there is nothing to kill and die for. The Internet allowed a million writers to write and publish without the interference of brokers and intermediaries. It allowed a billion people to download a trillion songs that were locked away in some rich man’s virtual vault. It allowed a dozen countries to overthrow their dictators without wasting a billion worth of goods and treasure.

On the Internet, everyone is equal, free and true to the own nature they choose, not the fate that is chosen by corporation, country or circumstance.
Ah! The Internet- it will set you free.

Cyber Attacks-Protecting your assets and people from cyber attacks

Cyber Attacks-Protecting your assets and people from cyber attacks

Everyday we hear of new cyber attacks on organizations and countries. The latest attacks were on IMF and 200,000 accounts of Citibank and now the website of the US Senate. If some of the most powerful and technologically advanced organizations could not survive targeted attacks, how effective is your organization in handling cyber security. Sony Playstation, Google Gmail, PBS website are other famous targets that have been victimized.

Before we play the blame game by pointing to China for sponsoring hacker attacks, or Russian spammers for creating Bot Nets or ex Silicon Valley /American technology experts rendered jobless by off-shoring, we need to both understand which companies are most vulnerable, which processes need to be fine tuned and what is the plan of action in case your cyber security is breached.

Which companies are most vulnerable?

If you have valuable data, confidential in nature , in electronic form AND connectivity to internet, you have an opening. Think of data as water, if you have a small leakage all the water can be leaked away. To add to complexity, the attackers are mostly unknown, and extremely difficult to catch, and can take a big chunk of your credibility and intellectual property in a very short time.

The best people in technology are not the ones attending meetings in nicely pressed suits– and your IT guy is rarely a match for the talent that is now available on freelance hire for cyber corporate espionage.

Any company or organization that has not undergone through one real time simulated cyber attack or IT audit that focuses on data security is very vulnerable.

Which organizational processes need to be fine tuned ?
Clearly employee access even at senior management needs to be ensured for both technological as well as social vulnerability. Does your reception take the name of senior management if cold called. Do your senior managers surf the internet and use a simple password on the same computer and laptop. Do you have disaster management and redundancy plans.
A wall is only as strong as its weakest brick and the same is true of organizational readiness for cyber attacks.

What is the plan of action in case your cyber security is breached?
Lean back, close your eyes and think your website has just been breached, someone has just stolen confidential emails from your corporate email server, and complete client as well as the most confidential data in your organization has been lost.

Do you have a plan for what to do next? Or are you waiting for an actual cyber event to occur to make that plan.