C4ISTAR for Hacking and Cyber Conflict

As per http://en.wikipedia.org/wiki/C4ISTAR

C2I stands for command, control, and intelligence.

C3I stands for command, control, communications, and intelligence.

C4I stands for command, control, communications, computers, and (military) intelligence.

C4ISTAR is the British acronym used to represent the group of the military functions designated by C4 (command, control, communications, computers), I (military intelligence), and STAR (surveillance, target acquisition, and reconnaissance) in order to enable the coordination of operations

I increasingly believe that cyber conflict will develop its own terminology and theory and paradigms in due time. In the meantime, it will adopt paradigms from existing military literature and adapt it to the unique sub culture of cyber conflict for both offensive, defensive as well as pre-emptive actions. Here I am theorizing for a case of targeted hacking attacks rather than massive attacks that bring down a website for a few hours and achieve nothing but a few press headlines . I would also theorize on countering such attacks.

So what would be the C4ISTAR for –

1) Media company supporting SOPA/PIPA/Take down Mega Upload-

Command and Control refers to the ability of commanders to direct forces-

This will be the senior executives including the members of board, legal officers, and public relationship/marketing people. Their name is available from corporate websites, and social media scraping can ensure both a list of contact addresses (online) as well as biases for phishing /malware attacks. This could also include phone (flooding or voicemail hacking ) attacks , and attacks against the email server of the company rather than the corporate website.

Communications– This will include all online and social media channels including websites of the media company , but also  those of the press relations firms handling communications , phones,websites- anything which the target is likely to communicate externally (and if possible internal communication)

Timing is everything- coordinating attacks immediately is juevenile, but it might be more mature to attack on vulnerable days like product launches or just before a board of directors meeting

Intelligence

Most corporates have an in-house research team, they can be easily targeted using social media channels, but also offline research and digging deep. Targeting intelligence corps of the target corporate is likely to produce a much better disruption. Eventually they can be persuaded to stop working for that corporate.

Computers– Anything that runs on electricity and can be disabled – should be disabled. This might require much more creativity than just flooding.

 surveillance-  This can be both online as well as offline, and would be of electronic assets, likely responses for the attack, and the key people who are to be disrupted.

target acquisition-  at least ten people within each corporate can and should be ideally disrupted, rather than just the website. this would call for social media scraping, and prior planning. even email in-boxes can be disrupted (if all else fails)

and reconnaissance-

study your target companies, target employees, and their strategies.

Then segment and prioritize in a list of  matrix of 10  to 10, who is more vulnerable and who is more valuable to attack.

the C4ISTAR for -a hacker activist organization is much more complicated but forensics reveal that most hackers tend to leave a signature style (in terms of computers,operating systems,machine ids,communication, tools, or even port numbers used)

the best defense for a media rich company to prevent hacking attacks is to first identify its own C4ISTAR structure for its digital content strategy and then fortify as well as scrub vulnerabilities (including from online information regarding its own employees)

(to be continued)

http://www.catb.org/~esr/faqs/hacker-howto.html

The Hacker Attitude

Quantitative Modeling for Arbitrage Positions in Ad KeyWords Internet Marketing

Assume you treat an ad keyword as an equity stock. There are slight differences in the cost for advertising for that keyword across various locations (Zurich vs Delhi) and various channels (Facebook vs Google) . You get revenue if your website ranks naturally in organic search for the keyword, and you have to pay costs for getting traffic to your website for that keyword.
An arbitrage position is defined as a riskless profit when cost of keyword is less than revenue from keyword. We take examples of Adsense  and Adwords primarily.
There are primarily two types of economic curves on the foundation of which commerce of the  internet  resides-
1) Cost Curve- Cost of Advertising to drive traffic into the website  (Google Adwords, Twitter Ads, Facebook , LinkedIn ads)
2) Revenue Curve – Revenue from ads clicked by the incoming traffic on website (like Adsense, LinkAds, Banner Ads, Ad Sharing Programs , In Game Ads)
The cost and revenue curves are primarily dependent on two things
1) Type of KeyWord-Also subdependent on
a) Location of Prospective Customer, and
b) Net Present Value of Good and Service to be eventually purchased
For example , keyword for targeting sales of enterprise “business intelligence software” should ideally be costing say X times as much as keywords for “flower shop for birthdays” where X is the multiple of the expected payoffs from sales of business intelligence software divided by expected payoff from sales of flowers (say in Location, Daytona Beach ,Florida or Austin, Texas)
2) Traffic Volume – Also sub-dependent on Time Series and
a) Seasonality -Annual Shoppping Cycle
b) Cyclicality– Macro economic shifts in time series
The cost and revenue curves are not linear and ideally should be continuous in a definitive exponential or polynomial manner, but in actual reality they may have sharp inflections , due to location, time, as well as web traffic volume thresholds
Type of Keyword – For example ,keywords for targeting sales for Eminem Albums may shoot up in a non linear manner after the musician dies.
The third and not so publicly known component of both the cost and revenue curves is factoring in internet industry dynamics , including relative market share of internet advertising platforms, as well as percentage splits between content creator and ad providing platforms.
For example, based on internet advertising spend, people belive that the internet advertising is currently heading for a duo-poly with Google and Facebook are the top two players, while Microsoft/Skype/Yahoo and LinkedIn/Twitter offer niche options, but primarily depend on price setting from Google/Bing/Facebook.
It is difficut to quantify  the elasticity and efficiency of market curves as most literature and research on this is by in-house corporate teams , or advisors or mentors or consultants to the primary leaders in a kind of incesteous fraternal hold on public academic research on this.
It is recommended that-
1) a balance be found in the need for corporate secrecy to protest shareholder value /stakeholder value maximization versus the need for data liberation for innovation and grow the internet ad pie faster-
2) Cost and Revenue Curves between different keywords, time,location, service providers, be studied by quants for hedging inetrent ad inventory or /and choose arbitrage positions This kind of analysis is done for groups of stocks and commodities in the financial world, but as commerce grows on the internet this may need more specific and independent quants.
3) attention be made to how cost and revenue curves mature as per level of sophistication of underlying economy like Brazil, Russia, China, Korea, US, Sweden may be in different stages of internet ad market evolution.
For example-
A study in cost and revenue curves for certain keywords across domains across various ad providers across various locations from 2003-2008 can help academia and research (much more than top ten lists of popular terms like non quantitative reports) as well as ensure that current algorithmic wightings are not inadvertently given away.
Part 2- of this series will explore the ways to create third party re-sellers of keywords and measuring impacts of search and ad engine optimization based on keywords.

Topic Models

Some stuff on Topic Models-

http://en.wikipedia.org/wiki/Topic_model

In machine learning and natural language processing, a topic model is a type of statistical model for discovering the abstract “topics” that occur in a collection of documents. An early topic model was probabilistic latent semantic indexing (PLSI), created by Thomas Hofmann in 1999.[1] Latent Dirichlet allocation (LDA), perhaps the most common topic model currently in use, is a generalization of PLSI developed by David Blei, Andrew Ng, and Michael Jordan in 2002, allowing documents to have a mixture of topics.[2] Other topic models are generally extensions on LDA, such as Pachinko allocation, which improves on LDA by modeling correlations between topics in addition to the word correlations which constitute topics. Although topic models were first described and implemented in the context of natural language processing, they have applications in other fields such as bioinformatics.

http://en.wikipedia.org/wiki/Latent_Dirichlet_allocation

In statistics, latent Dirichlet allocation (LDA) is a generative model that allows sets of observations to be explained by unobserved groups that explain why some parts of the data are similar. For example, if observations are words collected into documents, it posits that each document is a mixture of a small number of topics and that each word’s creation is attributable to one of the document’s topics. LDA is an example of a topic model

David M Blei’s page on Topic Models-

http://www.cs.princeton.edu/~blei/topicmodeling.html

The topic models mailing list is a good forum for discussing topic modeling.

In R,

Some resources I compiled on Slideshare based on the above- Continue reading “Topic Models”

Interview Dan Steinberg Founder Salford Systems

Here is an interview with Dan Steinberg, Founder and President of Salford Systems (http://www.salford-systems.com/ )

Ajay- Describe your journey from academia to technology entrepreneurship. What are the key milestones or turning points that you remember.

 Dan- When I was in graduate school studying econometrics at Harvard,  a number of distinguished professors at Harvard (and MIT) were actively involved in substantial real world activities.  Professors that I interacted with, or studied with, or whose software I used became involved in the creation of such companies as Sun Microsystems, Data Resources, Inc. or were heavily involved in business consulting through their own companies or other influential consultants.  Some not involved in private sector consulting took on substantial roles in government such as membership on the President’s Council of Economic Advisors. The atmosphere was one that encouraged free movement between academia and the private sector so the idea of forming a consulting and software company was quite natural and did not seem in any way inconsistent with being devoted to the advancement of science.

 Ajay- What are the latest products by Salford Systems? Any future product plans or modification to work on Big Data analytics, mobile computing and cloud computing.

 Dan- Our central set of data mining technologies are CART, MARS, TreeNet, RandomForests, and PRIM, and we have always maintained feature rich logistic regression and linear regression modules. In our latest release scheduled for January 2012 we will be including a new data mining approach to linear and logistic regression allowing for the rapid processing of massive numbers of predictors (e.g., one million columns), with powerful predictor selection and coefficient shrinkage. The new methods allow not only classic techniques such as ridge and lasso regression, but also sub-lasso model sizes. Clear tradeoff diagrams between model complexity (number of predictors) and predictive accuracy allow the modeler to select an ideal balance suitable for their requirements.

The new version of our data mining suite, Salford Predictive Modeler (SPM), also includes two important extensions to the boosted tree technology at the heart of TreeNet.  The first, Importance Sampled learning Ensembles (ISLE), is used for the compression of TreeNet tree ensembles. Starting with, say, a 1,000 tree ensemble, the ISLE compression might well reduce this down to 200 reweighted trees. Such compression will be valuable when models need to be executed in real time. The compression rate is always under the modeler’s control, meaning that if a deployed model may only contain, say, 30 trees, then the compression will deliver an optimal 30-tree weighted ensemble. Needless to say, compression of tree ensembles should be expected to be lossy and how much accuracy is lost when extreme compression is desired will vary from case to case. Prior to ISLE, practitioners have simply truncated the ensemble to the maximum allowable size.  The new methodology will substantially outperform truncation.

The second major advance is RULEFIT, a rule extraction engine that starts with a TreeNet model and decomposes it into the most interesting and predictive rules. RULEFIT is also a tree ensemble post-processor and offers the possibility of improving on the original TreeNet predictive performance. One can think of the rule extraction as an alternative way to explain and interpret an otherwise complex multi-tree model. The rules extracted are similar conceptually to the terminal nodes of a CART tree but the various rules will not refer to mutually exclusive regions of the data.

 Ajay- You have led teams that have won multiple data mining competitions. What are some of your favorite techniques or approaches to a data mining problem.

 Dan- We only enter competitions involving problems for which our technology is suitable, generally, classification and regression. In these areas, we are  partial to TreeNet because it is such a capable and robust learning machine. However, we always find great value in analyzing many aspects of a data set with CART, especially when we require a compact and easy to understand story about the data. CART is exceptionally well suited to the discovery of errors in data, often revealing errors created by the competition organizers themselves. More than once, our reports of data problems have been responsible for the competition organizer’s decision to issue a corrected version of the data and we have been the only group to discover the problem.

In general, tackling a data mining competition is no different than tackling any analytical challenge. You must start with a solid conceptual grasp of the problem and the actual objectives, and the nature and limitations of the data. Following that comes feature extraction, the selection of a modeling strategy (or strategies), and then extensive experimentation to learn what works best.

 Ajay- I know you have created your own software. But are there other software that you use or liked to use?

 Dan- For analytics we frequently test open source software to make sure that our tools will in fact deliver the superior performance we advertise. In general, if a problem clearly requires technology other than that offered by Salford, we advise clients to seek other consultants expert in that other technology.

 Ajay- Your software is installed at 3500 sites including 400 universities as per http://www.salford-systems.com/company/aboutus/index.html What is the key to managing and keeping so many customers happy?

 Dan- First, we have taken great pains to make our software reliable and we make every effort  to avoid problems related to bugs.  Our testing procedures are extensive and we have experts dedicated to stress-testing software . Second, our interface is designed to be natural, intuitive, and easy to use, so the challenges to the new user are minimized. Also, clear documentation, help files, and training videos round out how we allow the user to look after themselves. Should a client need to contact us we try to achieve 24-hour turn around on tech support issues and monitor all tech support activity to ensure timeliness, accuracy, and helpfulness of our responses. WebEx/GotoMeeting and other internet based contact permit real time interaction.

 Ajay- What do you do to relax and unwind?

 Dan- I am in the gym almost every day combining weight and cardio training. No matter how tired I am before the workout I always come out energized so locating a good gym during my extensive travels is a must. I am also actively learning Portuguese so I look to watch a Brazilian TV show or Portuguese dubbed movie when I have time; I almost never watch any form of video unless it is available in Portuguese.

 Biography-

http://www.salford-systems.com/blog/dan-steinberg.html

Dan Steinberg, President and Founder of Salford Systems, is a well-respected member of the statistics and econometrics communities. In 1992, he developed the first PC-based implementation of the original CART procedure, working in concert with Leo Breiman, Richard Olshen, Charles Stone and Jerome Friedman. In addition, he has provided consulting services on a number of biomedical and market research projects, which have sparked further innovations in the CART program and methodology.

Dr. Steinberg received his Ph.D. in Economics from Harvard University, and has given full day presentations on data mining for the American Marketing Association, the Direct Marketing Association and the American Statistical Association. After earning a PhD in Econometrics at Harvard Steinberg began his professional career as a Member of the Technical Staff at Bell Labs, Murray Hill, and then as Assistant Professor of Economics at the University of California, San Diego. A book he co-authored on Classification and Regression Trees was awarded the 1999 Nikkei Quality Control Literature Prize in Japan for excellence in statistical literature promoting the improvement of industrial quality control and management.

His consulting experience at Salford Systems has included complex modeling projects for major banks worldwide, including Citibank, Chase, American Express, Credit Suisse, and has included projects in Europe, Australia, New Zealand, Malaysia, Korea, Japan and Brazil. Steinberg led the teams that won first place awards in the KDDCup 2000, and the 2002 Duke/TeraData Churn modeling competition, and the teams that won awards in the PAKDD competitions of 2006 and 2007. He has published papers in economics, econometrics, computer science journals, and contributes actively to the ongoing research and development at Salford.

Analytics 2011 Conference

From http://www.sas.com/events/analytics/us/

The Analytics 2011 Conference Series combines the power of SAS’s M2010 Data Mining Conference and F2010 Business Forecasting Conference into one conference covering the latest trends and techniques in the field of analytics. Analytics 2011 Conference Series brings the brightest minds in the field of analytics together with hundreds of analytics practitioners. Join us as these leading conferences change names and locations. At Analytics 2011, you’ll learn through a series of case studies, technical presentations and hands-on training. If you are in the field of analytics, this is one conference you can’t afford to miss.

Conference Details

October 24-25, 2011
Grande Lakes Resort
Orlando, FL

Analytics 2011 topic areas include:

Updated Interview Elissa Fink -VP Tableau Software

Here is an interview with Elissa Fink, VP Marketing of that new wonderful software called Tableau that makes data visualization so nice and easy to learn and work with.

Elissa Fink, VP, Marketing

Ajay-  Describe your career journey from high school to over 20 plus years in marketing. What are the various trends that you have seen come and go in marketing.

Elissa- I studied literature and linguistics in college and didn’t discover analytics until my first job selling advertising for the Wall Street Journal. Oddly enough, the study of linguistics is not that far from decision analytics: they both are about taking a structured view of information and trying to see and understand common patterns. At the Journal, I was completely captivated analyzing and comparing readership data. At the same time, the idea of using computers in marketing was becoming more common. I knew that the intersection of technology and marketing was going to radically change things – how we understand consumers, how we market and sell products, and how we engage with customers. So from that point on, I’ve always been focused on technology and marketing, whether it’s working as a marketer at technology companies or applying technology to marketing problems for other types of companies.  There have been so many interesting trends. Taking a long view, a key trend I’ve noticed is how marketers work to understand, influence and motivate consumer behavior. We’ve moved marketing from where it was primarily unpredictable, qualitative and aimed at talking to mass audiences, where the advertising agency was king. Now it’s a discipline that is more data-driven, quantitative and aimed at conversations with individuals, where the best analytics wins. As with any trend, the pendulum swings far too much to either side causing backlashes but overall, I think we are in a great place now. We are using data-driven analytics to understand consumer behavior. But pure analytics is not the be-all, end-all; good marketing has to rely on understanding human emotions, intuition and gut feel – consumers are far from rational so taking only a rational or analytical view of them will never explain everything we need to know.

Ajay- Do you think technology companies are still predominantly dominated by men . How have you seen diversity evolve over the years. What initiatives has Tableau taken for both hiring and retaining great talent.

Elissa- The thing I love about the technology industry is that its key success metrics – inventing new products that rapidly gain mass adoption in pursuit of making profit – are fairly objective. There’s little subjective nature to the counting of dollars collected selling a product and dollars spent building a product. So if a female can deliver a better product and bigger profits faster and better, then that female is going to get the resources, jobs, power and authority to do exactly that. That’s not to say that the technology industry is gender-blind, race-blind, etc. It isn’t – technology is far from perfect. For example, the industry doesn’t have enough diversity in positions of power. But I think overall, in comparison to a lot of other industries, it’s pretty darn good at giving people with great ideas the opportunities to realize their visions regardless of their backgrounds or characteristics.

At Tableau, we are very serious about bringing in and developing talented people – they are the key to our growth and success. Hiring is our #1 initiative so we’ve spent a lot of time and energy both on finding great candidates and on making Tableau a place that they want to work. This includes things like special recruiting events, employee referral programs, a flexible work environment, fun social events, and the rewards of working for a start-up. Probably our biggest advantage is the company itself – working with people you respect on amazing, cutting-edge products that delight customers and are changing the world is all too rare in the industry but a reality at Tableau. One of our senior software developers put it best when he wrote “The emphasis is on working smarter rather than longer: family and friends are why we work, not the other way around. Tableau is all about happy, energized employees executing at the highest level and delivering a highly usable, high quality, useful product to our customers.” People who want to be at a place like that should check out our openings at http://www.tableausoftware.com/jobs.

Ajay- What are most notable features in tableau’s latest edition. What are the principal software that competes with Tableau Software products and how would you say Tableau compares with them.

Elissa- Tableau 6.1 will be out in July and we are really excited about it for 3 reasons.

First, we’re introducing our mobile business intelligence capabilities. Our customers can have Tableau anywhere they need it. When someone creates an interactive dashboard or analytical application with Tableau and it’s viewed on a mobile device, an iPad in particular, the viewer will have a native, touch-optimized experience. No trying to get your fingertips to act like a mouse. And the author didn’t have to create anything special for the iPad; she just creates her analytics the usual way in Tableau. Tableau knows the dashboard is being viewed on an iPad and presents an optimized experience.

Second, we’ve take our in-memory analytics engine up yet another level. Speed and performance are faster and now people can update data incrementally rapidly. Introduced in 6.0, our data engine makes any data fast in just a few clicks. We don’t run out of memory like other applications. So if I build an incredible dashboard on my 8-gig RAM PC and you try to use it on your 2-gig RAM laptop, no problem.

And, third, we’re introducing more features for the international markets – including French and German versions of Tableau Desktop along with more international mapping options.  It’s because we are constantly innovating particularly around user experience that we can compete so well in the market despite our relatively small size. Gartner’s seminal research study about the Business Intelligence market reported a massive market shift earlier this year: for the first time, the ease-of-use of a business intelligence platform was more important than depth of functionality. In other words, functionality that lots of people can actually use is more important than having sophisticated functionality that only specialists can use. Since we focus so heavily on making easy-to-use products that help people rapidly see and understand their data, this is good news for our customers and for us.

Ajay-  Cloud computing is the next big thing with everyone having a cloud version of their software. So how would you run Cloud versions of Tableau Server (say deploying it on an Amazon Ec2  or a private cloud)

Elissa- In addition to the usual benefits espoused about Cloud computing, the thing I love best is that it makes data and information more easily accessible to more people. Easy accessibility and scalability are completely aligned with Tableau’s mission. Our free product Tableau Public and our product for commercial websites Tableau Digital are two Cloud-based products that deliver data and interactive analytics anywhere. People often talk about large business intelligence deployments as having thousands of users. With Tableau Public and Tableau Digital, we literally have millions of users. We’re serving up tens of thousands of visualizations simultaneously – talk about accessibility and scalability!  We have lots of customers connecting to databases in the Cloud and running Tableau Server in the Cloud. It’s actually not complex to set up. In fact, we focus a lot of resources on making installation and deployment easy and fast, whether it’s in the cloud, on premise or what have you. We don’t want people to have spend weeks or months on massive roll-out projects. We want it to be minutes, hours, maybe a day or 2. With the Cloud, we see that people can get started and get results faster and easier than ever before. And that’s what we’re about.

Ajay- Describe some of the latest awards that Tableau has been wining. Also how is Tableau helping universities help address the shortage of Business Intelligence and Big Data professionals.

Elissa-Tableau has been very fortunate. Lately, we’ve been acknowledged by both Gartner and IDC as the fastest growing business intelligence software vendor in the world. In addition, our customers and Tableau have won multiple distinctions including InfoWorld Technology Leadership awards, Inc 500, Deloitte Fast 500, SQL Server Magazine Editors’ Choice and Community Choice awards, Data Hero awards, CODiEs, American Business Awards among others. One area we’re very passionate about is academia, participating with professors, students and universities to help build a new generation of professionals who understand how to use data. Data analysis should not be exclusively for specialists. Everyone should be able to see and understand data, whatever their background. We come from academic roots, having been spun out of a Stanford research project. Consequently, we strongly believe in supporting universities worldwide and offer 2 academic programs. The first is Tableau For Teaching, where any professor can request free term-length licenses of Tableau for academic instruction during his or her courses. And, we offer a low-cost Student Edition of Tableau so that students can choose to use Tableau in any of their courses at any time.

Elissa Fink, VP Marketing,Tableau Software

 

Elissa Fink is Tableau Software’s Vice President of Marketing. With 20+ years helping companies improve their marketing operations through applied data analysis, Elissa has held executive positions in marketing, business strategy, product management, and product development. Prior to Tableau, Elissa was EVP Marketing at IXI Corporation, now owned by Equifax. She has also served in executive positions at Tele Atlas (acquired by TomTom), TopTier Software (acquired by SAP), and Nielsen/Claritas. Elissa also sold national advertising for the Wall Street Journal. She’s a frequent speaker and has spoken at conferences including the DMA, the NCDM, Location Intelligence, the AIR National Forum and others. Elissa is a graduate of Santa Clara University and holds an MBA in Marketing and Decision Systems from the University of Southern California.

Elissa first discovered Tableau late one afternoon at her previous company. Three hours later, she was still “at play” with her data. “After just a few minutes using the product, I was getting answers to questions that were taking my company’s programmers weeks to create. It was instantly obvious that Tableau was on a special mission with something unique to offer the world. I just had to be a part of it.”

To know more – read at http://www.tableausoftware.com/

and existing data viz at http://www.tableausoftware.com/learn/gallery

Storm seasons: measuring and tracking key indicators
What’s happening with local real estate prices?
How are sales opportunities shaping up?
Identify your best performing products
Applying user-defined parameters to provide context
Not all tech companies are rocket ships
What’s really driving the economy?
Considering factors and industry influencers
The complete orbit along the inside, or around a fixed circle
How early do you have to be at the airport?
What happens if sales grow but so does customer churn?
What are the trends for new retail locations?
How have student choices changed?
Do patients who disclose their HIV status recover better?
Closer look at where gas prices swing in areas of the U.S.
U.S. Census data shows more women of greater age
Where do students come from and how does it affect their grades?
Tracking customer service effectiveness
Comparing national and local test scores
What factors correlate with high overall satisfaction ratings?
Fund inflows largely outweighed outflows well after the bubble
Which programs are competing for federal stimulus dollars?
Oil prices and volatility
A classic candlestick chart
How do oil, gold and CPI relate to the GDP growth rate?

 

The Lover: A Poem


The Lover

Your emerald eyes,

Like dewdrops glistening on green grass.

The shine in them,

Is like the twinkling of the stars.

You’re ivory skin,

Reminds me of the moonlight.

Like a gorgeous lily

Colored in silvery white.

Your sunkissed hair,

Blowing gently in the breeze.

I do not look long,

My breath may freeze.

You’re sideways glance,

As sharp as a knife.

Like a Greek goddess or a marble sculpture,

Brought to life.

Your poise, your grace,

Guides my moving pen.

Your beauty brings out,

The poet within.

The tinkle of your soft voice remains in my ears,

Long after you are long gone.

Your memory drives me crazy,

Makes me want to break out in a song.

 

 

Alas, my dear

I am in love with your beauty

But not with you.

This sounds like an obsession,

For this love is not true.

I am a passionate man,

With much passion to spare.

As soon as you leave my thoughts,

Someone else is already there.

 

%d bloggers like this: