Databases in the cloud

One more day of me mucking around MySQL and Amazon (hoping to get to the R)

Data Frame in Python

Exploring some Python Packages and R packages to move /work with both Python and R without melting your brain or exceeding your project deadline

—————————————

If you liked the data.frame structure in R, you have some way to work with them at a faster processing speed in Python.

Here are three packages that enable you to do so-

(1) pydataframe http://code.google.com/p/pydataframe/

An implemention of an almost R like DataFrame object. (install via Pypi/Pip: “pip install pydataframe”)

Usage:

        u = DataFrame( { "Field1": [1, 2, 3],
                        "Field2": ['abc', 'def', 'hgi']},
                        optional:
                         ['Field1', 'Field2']
                         ["rowOne", "rowTwo", "thirdRow"])

A DataFrame is basically a table with rows and columns.

Columns are named, rows are numbered (but can be named) and can be easily selected and calculated upon. Internally, columns are stored as 1d numpy arrays. If you set row names, they’re converted into a dictionary for fast access. There is a rich subselection/slicing API, see help(DataFrame.get_item) (it also works for setting values). Please note that any slice get’s you another DataFrame, to access individual entries use get_row(), get_column(), get_value().

DataFrames also understand basic arithmetic and you can either add (multiply,…) a constant value, or another DataFrame of the same size / with the same column names, like this:

#multiply every value in ColumnA that is smaller than 5 by 6.
my_df[my_df[:,'ColumnA'] < 5, 'ColumnA'] *= 6

#you always need to specify both row and column selectors, use : to mean everything
my_df[:, 'ColumnB'] = my_df[:,'ColumnA'] + my_df[:, 'ColumnC']

#let's take every row that starts with Shu in ColumnA and replace it with a new list (comprehension)
select = my_df.where(lambda row: row['ColumnA'].startswith('Shu'))
my_df[select, 'ColumnA'] = [row['ColumnA'].replace('Shu', 'Sha') for row in my_df[select,:].iter_rows()]

Dataframes talk directly to R via rpy2 (rpy2 is not a prerequiste for the library!)

 

(2) pandas http://pandas.pydata.org/

Library Highlights

  • A fast and efficient DataFrame object for data manipulation with integrated indexing;
  • Tools for reading and writing data between in-memory data structures and different formats: CSV and text files, Microsoft Excel, SQL databases, and the fast HDF5 format;
  • Intelligent data alignment and integrated handling of missing data: gain automatic label-based alignment in computations and easily manipulate messy data into an orderly form;
  • Flexible reshaping and pivoting of data sets;
  • Intelligent label-based slicing, fancy indexing, and subsetting of large data sets;
  • Columns can be inserted and deleted from data structures for size mutability;
  • Aggregating or transforming data with a powerful group by engine allowing split-apply-combine operations on data sets;
  • High performance merging and joining of data sets;
  • Hierarchical axis indexing provides an intuitive way of working with high-dimensional data in a lower-dimensional data structure;
  • Time series-functionality: date range generation and frequency conversion, moving window statistics, moving window linear regressions, date shifting and lagging. Even create domain-specific time offsets and join time series without losing data;
  • The library has been ruthlessly optimized for performance, with critical code paths compiled to C;
  • Python with pandas is in use in a wide variety of academic and commercial domains, including Finance, Neuroscience, Economics, Statistics, Advertising, Web Analytics, and more.

Why not R?

First of all, we love open source R! It is the most widely-used open source environment for statistical modeling and graphics, and it provided some early inspiration for pandas features. R users will be pleased to find this library adopts some of the best concepts of R, like the foundational DataFrame (one user familiar with R has described pandas as “R data.frame on steroids”). But pandas also seeks to solve some frustrations common to R users:

  • R has barebones data alignment and indexing functionality, leaving much work to the user. pandas makes it easy and intuitive to work with messy, irregularly indexed data, like time series data. pandas also provides rich tools, like hierarchical indexing, not found in R;
  • R is not well-suited to general purpose programming and system development. pandas enables you to do large-scale data processing seamlessly when developing your production applications;
  • Hybrid systems connecting R to a low-productivity systems language like Java, C++, or C# suffer from significantly reduced agility and maintainability, and you’re still stuck developing the system components in a low-productivity language;
  • The “copyleft” GPL license of R can create concerns for commercial software vendors who want to distribute R with their software under another license. Python and pandas use more permissive licenses.

(3) datamatrix http://pypi.python.org/pypi/datamatrix/0.8

datamatrix 0.8

A Pythonic implementation of R’s data.frame structure.

Latest Version: 0.9

This module allows access to comma- or other delimiter separated files as if they were tables, using a dictionary-like syntax. DataMatrix objects can be manipulated, rows and columns added and removed, or even transposed

—————————————————————–

Modeling in Python

Continue reading “Data Frame in Python”

Decisionstats.com is back from a dDOS

  1. Servers were okay, it was the DNS server that got swamped.
  2. I am sorry for the downtime- hopefully you didnt even notice
  3. I have faced challenges like domain name hijacking, sql injection , malicious WP plugins and thats why shifted to a professional hosting. I stand by my vendors and their professional judgement, moving away would mean the hackers won.
  4. This was very clever to swamp the DNS provider- my compliments to the tech talent behind this.
  5. You would think that every webmaster would have a back up plan in case his site went dDOS, but surprisingly even corporate websites dont have a back up (under attack) plan

 

Anonymous grows up and matures…Anonanalytics.com

I liked the design, user interfaces and the conceptual ideas behind the latest Anonymous hactivist websites (much better than the shabby graphic design of Wikileaks, or Friends of Wikileaks, though I guess they have been busy what with Julian’s escapades and Syrian emails)

 

I disagree  (and let us agree to disagree some of the time)

with the complete lack of respect for Graphical User Interfaces for tools. If dDOS really took off due to LOIC, why not build a GUI for SQL Injection (or atleats the top 25 vulnerability testing as by this list http://www.sans.org/top25-software-errors/

Shouldnt Tor be embedded within the next generation of Loic.

Automated testing tools are used by companies like Adobe (and others)… so why not create simple GUI for the existing tools.., I may be completely offtrack here.. but I think hacker education has been a critical misstep[ that has undermined Western Democracies preparedness for Cyber tactics by hostile regimes)…. how to create the next generation of hackers by easy tutorials (see codeacademy and build appropriate modules)

-A slick website to be funded by Bitcoins (Money can buy everything including Mastercard and Visa, but Bitcoins are an innovative step towards an internet economy  currency)

-A collobrative wiki

http://wiki.echelon2.org/wiki/Main_Page

Seriously dude, why not make this a part of Wikipedia- (i know Jimmy Wales got shifty eyes, but can you trust some1 )

-Analytics for Anonymous (sighs! I should have thought about this earlier)

http://anonanalytics.com/ (can be used to play and bill both sides of corporate espionage and be cyber private investigators)

What We Do

We provide the public with investigative reports exposing corrupt companies. Our team includes analysts, forensic accountants, statisticians, computer experts, and lawyers from various jurisdictions and backgrounds. All information presented in our reports is acquired through legal channels, fact-checked, and vetted thoroughly before release. This is both for the protection of our associates as well as groups/individuals who rely on our work.

_and lastly creative content for Pinterest.com and Public Relations ( what next-? Tom Cruise to play  Julian Assange in the new Movie ?)

http://www.par-anoia.net/ />Potentially Alarming Research: Anonymous Intelligence AgencyInformation is and will be free. Expect it. ~ Anonymous

Links of interest

  • Latest Scientology Mails (Austria)
  • Full FBI call transcript
  • Arrest Tracker
  • HBGary Email Viewer
  • The Pirate Bay Proxy
  • We Are Anonymous – Book
  • To be announced…

 

Google Cloud is finally here

Amazon gets some competition, and customers should see some relief, unless Google withdraws commitment on these products after a few years of trying (like it often does now!)

 

http://cloud.google.com/products/index.html

Machine Type Pricing
Configuration Virtual Cores Memory GCEU * Local disk Price/Hour $/GCEU/hour
n1-standard-1-d 1 3.75GB *** 2.75 420GB *** $0.145 0.053
n1-standard-2-d 2 7.5GB 5.5 870GB $0.29 0.053
n1-standard-4-d 4 15GB 11 1770GB $0.58 0.053
n1-standard-8-d 8 30GB 22 2 x 1770GB $1.16 0.053
Network Pricing
Ingress Free
Egress to the same Zone. Free
Egress to a different Cloud service within the same Region. Free
Egress to a different Zone in the same Region (per GB) $0.01
Egress to a different Region within the US $0.01 ****
Inter-continental Egress At Internet Egress Rate
Internet Egress (Americas/EMEA destination) per GB
0-1 TB in a month $0.12
1-10 TB $0.11
10+ TB $0.08
Internet Egress (APAC destination) per GB
0-1 TB in a month $0.21
1-10 TB $0.18
10+ TB $0.15
Persistent Disk Pricing
Provisioned space $0.10 GB/month
Snapshot storage** $0.125 GB/month
IO Operations $0.10 per million
IP Address Pricing
Static IP address (assigned but unused) $0.01 per hour
Ephemeral IP address (attached to instance) Free
* GCEU is Google Compute Engine Unit — a measure of computational power of our instances based on industry benchmarks; review the GCEU definition for more information
** coming soon
*** 1GB is defined as 2^30 bytes
**** promotional pricing; eventually will be charged at internet download rates

Google Prediction API

Tap into Google’s machine learning algorithms to analyze data and predict future outcomes.

Leverage machine learning without the complexity
Use the familiar RESTful interface
Enter input in any format – numeric or text

Build smart apps

Learn how you can use Prediction API to build customer sentiment analysis, spam detection or document and email classification.

Google Translation API

Use Google Translate API to build multilingual apps and programmatically translate text in your webpage or application.

Translate text into other languages programmatically
Use the familiar RESTful interface
Take advantage of Google’s powerful translation algorithms

Build multilingual apps

Learn how you can use Translate API to build apps that can programmatically translate text in your applications or websites.

Google BigQuery

Analyze Big Data in the cloud using SQL and get real-time business insights in seconds using Google BigQuery. Use a fully-managed data analysis service with no servers to install or maintain.
Figure

Reliable & Secure

Complete peace of mind as your data is automatically replicated across multiple sites and secured using access control lists.
Scale infinitely

You can store up to hundreds of terabytes, paying only for what you use.
Blazing fast

Run ad hoc SQL queries on
multi-terabyte datasets in seconds.

Google App Engine

Create apps on Google’s platform that are easy to manage and scale. Benefit from the same systems and infrastructure that power Google’s applications.

Focus on your apps

Let us worry about the underlying infrastructure and systems.
Scale infinitely

See your applications scale seamlessly from hundreds to millions of users.
Business ready

Premium paid support and 99.95% SLA for business users

Interview Alvaro Tejada Galindo, SAP Labs Montreal, Using SAP Hana with #Rstats

Here is a brief interview with Alvaro Tejada Galindo aka Blag who is a developer working with SAP Hana and R at SAP Labs, Montreal. SAP Hana is SAP’s latest offering in BI , it’s also a database and a computing environment , and using R and HANA together on the cloud can give major productivity gains in terms of both speed and analytical ability, as per preliminary use cases.

Ajay- Describe how you got involved with databases and R language.
Blag-  I used to work as an ABAP Consultant for 11 years, but also been involved with programming since the last 13 years, so I was in touch with SQLServer, Oracle, MySQL and SQLite. When I joined SAP, I heard that SAP HANA was going to use an statistical programming language called “R”. The next day I started my “R” learning.

Ajay- What made the R language a fit for SAP HANA. Did you consider other languages? What is your view on Julia/Python/SPSS/SAS/Matlab languages

Blag- I think “R” is a must for SAP HANA. As the fastest database in the market, we needed a language that could help us shape the data in the best possible way. “R” filled that purpose very well. Right now, “R” is not the only language as “L” can be used as well (http://wiki.tcl.tk/17068) …not forgetting “SQLScript” which is our own version of SQL (http://goo.gl/x3bwh) . I have to admit that I tried Julia, but couldn’t manage to make it work. Regarding Python, it’s an interesting question as I’m going to blog about Python and SAP HANA soon. About Matlab, SPSS and SAS I haven’t used them, so I got nothing to say there.

Ajay- What is your view on some of the limitations of R that can be overcome with using it with SAP HANA.

Blag-  I think mostly the ability of SAP HANA to work with big data. Again, SAP HANA and “R” can work very nicely together and achieve things that weren’t possible before.

Ajay-  Have you considered other vendors of R including working with RStudio, Revolution Analytics, and even Oracle R Enterprise.

Blag-  I’m not really part of the SAP HANA or the R groups inside SAP, so I can’t really comment on that. I can only say that I use RStudio every time I need to do something with R. Regarding Oracle…I don’t think so…but they can use any of our products whenever they want.

Ajay- Do you have a case study on an actual usage of R with SAP HANA that led to great results.

Blag-   Right now the use of “R” and SAP HANA is very preliminary, I don’t think many people has start working on it…but as an example that it works, you can check this awesome blog entry from my friend Jitender Aswani “Big Data, R and HANA: Analyze 200 Million Data Points and Later Visualize Using Google Maps “ (http://allthingsr.blogspot.com/#!/2012/04/big-data-r-and-hana-analyze-200-million.html)

Ajay- Does your group in SAP plan to give to the R ecosystem by attending conferences like UseR 2012, sponsoring meets, or package development etc

Blag- My group is in charge of everything developers, so sure, we’re planning to get more in touch with R developers and their ecosystem. Not sure how we’re going to deal with it, but at least I’m going to get myself involved in the Montreal R Group.

 

About-

http://scn.sap.com/people/alvaro.tejadagalindo3

Name: Alvaro Tejada Galindo
Email: a.tejada.galindo@sap.com
Profession: Development
Company: SAP Canada Labs-Montreal
Town/City: Montreal
Country: Canada
Instant Messaging Type: Twitter
Instant Messaging ID: Blag
Personal URL: http://blagrants.blogspot.com
Professional Blog URL: http://www.sdn.sap.com/irj/scn/weblogs?blog=/pub/u/252210910
My Relation to SAP: employee
Short Bio: Development Expert for the Technology Innovation and Developer Experience team.Used to be an ABAP Consultant for the last 11 years. Addicted to programming since 1997.

http://www.sap.com/solutions/technology/in-memory-computing-platform/hana/overview/index.epx

and from

http://en.wikipedia.org/wiki/SAP_HANA

SAP HANA is SAP AG’s implementation of in-memory database technology. There are four components within the software group:[1]

  • SAP HANA DB (or HANA DB) refers to the database technology itself,
  • SAP HANA Studio refers to the suite of tools provided by SAP for modeling,
  • SAP HANA Appliance refers to HANA DB as delivered on partner certified hardware (see below) as anappliance. It also includes the modeling tools from HANA Studio as well replication and data transformation tools to move data into HANA DB,[2]
  • SAP HANA Application Cloud refers to the cloud based infrastructure for delivery of applications (typically existing SAP applications rewritten to run on HANA).

R is integrated in HANA DB via TCP/IP. HANA uses SQL-SHM, a shared memory-based data exchange to incorporate R’s vertical data structure. HANA also introduces R scripts equivalent to native database operations like join or aggregation.[20] HANA developers can write R scripts in SQL and the types are automatically converted in HANA. R scripts can be invoked with HANA tables as both input and output in the SQLScript. R environments need to be deployed to use R within SQLScript

More blog posts on using SAP and R together

Dealing with R and HANA

http://scn.sap.com/community/in-memory-business-data-management/blog/2011/11/28/dealing-with-r-and-hana
R meets HANA

http://scn.sap.com/community/in-memory-business-data-management/blog/2012/01/29/r-meets-hana

HANA meets R

http://scn.sap.com/community/in-memory-business-data-management/blog/2012/01/26/hana-meets-r
When SAP HANA met R – First kiss

http://scn.sap.com/community/developer-center/hana/blog/2012/05/21/when-sap-hana-met-r–first-kiss

 

Using RODBC with SAP HANA DB-

SAP HANA: My experiences on using SAP HANA with R

http://scn.sap.com/community/in-memory-business-data-management/blog/2012/02/21/sap-hana-my-experiences-on-using-sap-hana-with-r

and of course the blog that started it all-

Jitender Aswani’s http://allthingsr.blogspot.in/

 

 

Oracle launches its version of R #rstats

From-

http://www.oracle.com/us/corporate/press/1515738

Integrates R Statistical Programming Language into Oracle Database 11g

News Facts

Oracle today announced the availability of Oracle Advanced Analytics, a new option for Oracle Database 11g that bundles Oracle R Enterprise together with Oracle Data Mining.
Oracle R Enterprise delivers enterprise class performance for users of the R statistical programming language, increasing the scale of data that can be analyzed by orders of magnitude using Oracle Database 11g.
R has attracted over two million users since its introduction in 1995, and Oracle R Enterprise dramatically advances capability for R users. Their existing R development skills, tools, and scripts can now also run transparently, and scale against data stored in Oracle Database 11g.
Customer testing of Oracle R Enterprise for Big Data analytics on Oracle Exadata has shown up to 100x increase in performance in comparison to their current environment.
Oracle Data Mining, now part of Oracle Advanced Analytics, helps enable customers to easily build and deploy predictive analytic applications that help deliver new insights into business performance.
Oracle Advanced Analytics, in conjunction with Oracle Big Data ApplianceOracle Exadata Database Machine and Oracle Exalytics In-Memory Machine, delivers the industry’s most integrated and comprehensive platform for Big Data analytics.

Comprehensive In-Database Platform for Advanced Analytics

Oracle Advanced Analytics brings analytic algorithms to data stored in Oracle Database 11g and Oracle Exadata as opposed to the traditional approach of extracting data to laptops or specialized servers.
With Oracle Advanced Analytics, customers have a comprehensive platform for real-time analytic applications that deliver insight into key business subjects such as churn prediction, product recommendations, and fraud alerting.
By providing direct and controlled access to data stored in Oracle Database 11g, customers can accelerate data analyst productivity while maintaining data security throughout the enterprise.
Powered by decades of Oracle Database innovation, Oracle R Enterprise helps enable analysts to run a variety of sophisticated numerical techniques on billion row data sets in a matter of seconds making iterative, speed of thought, and high-quality numerical analysis on Big Data practical.
Oracle R Enterprise drastically reduces the time to deploy models by eliminating the need to translate the models to other languages before they can be deployed in production.
Oracle R Enterprise integrates the extensive set of Oracle Database data mining algorithms, analytics, and access to Oracle OLAP cubes into the R language for transparent use by R users.
Oracle Data Mining provides an extensive set of in-database data mining algorithms that solve a wide range of business problems. These predictive models can be deployed in Oracle Database 11g and use Oracle Exadata Smart Scan to rapidly score huge volumes of data.
The tight integration between R, Oracle Database 11g, and Hadoop enables R users to write one R script that can run in three different environments: a laptop running open source R, Hadoop running with Oracle Big Data Connectors, and Oracle Database 11g.
Oracle provides single vendor support for the entire Big Data platform spanning the hardware stack, operating system, open source R, Oracle R Enterprise and Oracle Database 11g.
To enable easy enterprise-wide Big Data analysis, results from Oracle Advanced Analytics can be viewed from Oracle Business Intelligence Foundation Suite and Oracle Exalytics In-Memory Machine.

Supporting Quotes

“Oracle is committed to meeting the challenges of Big Data analytics. By building upon the analytical depth of Oracle SQL, Oracle Data Mining and the R environment, Oracle is delivering a scalable and secure Big Data platform to help our customers solve the toughest analytics problems,” said Andrew Mendelsohn, senior vice president, Oracle Server Technologies.
“We work with leading edge customers who rely on us to deliver better BI from their Oracle Databases. The new Oracle R Enterprise functionality allows us to perform deep analytics on Big Data stored in Oracle Databases. By leveraging R and its library of open source contributed CRAN packages combined with the power and scalability of Oracle Database 11g, we can now do that,” said Mark Rittman, co-founder, Rittman Mead.
Oracle Advanced Analytics — an option to Oracle Database 11g Enterprise Edition – extends the database into a comprehensive advanced analytics platform through two major components: Oracle R Enterprise and Oracle Data Mining. With Oracle Advanced Analytics, customers have a comprehensive platform for real-time analytic applications that deliver insight into key business subjects such as churn prediction, product recommendations, and fraud alerting.

Oracle R Enterprise tightly integrates the open source R programming language with the database to further extend the database with Rs library of statistical functionality, and pushes down computations to the database. Oracle R Enterprise dramatically advances the capability for R users, and allows them to use their existing R development skills and tools, and scripts can now also run transparently and scale against data stored in Oracle Database 11g.

Oracle Data Mining provides powerful data mining algorithms that run as native SQL functions for in-database model building and model deployment. It can be accessed through the SQL Developer extension Oracle Data Miner to build, evaluate, share and deploy predictive analytics methodologies. At the same time the high-performance Oracle-specific data mining algorithms are accessible from R.

BENEFITS

  • Scalability—Allows customers to easily scale analytics as data volume increases by bringing the algorithms to where the data resides – in the database
  • Performance—With analytical operations performed in the database, R users can take advantage of the extreme performance of Oracle Exadata
  • Security—Provides data analysts with direct but controlled access to data in Oracle Database 11g, accelerating data analyst productivity while maintaining data security
  • Save Time and Money—Lowers overall TCO for data analysis by eliminating data movement and shortening the time it takes to transform “raw data” into “actionable information”
Oracle R Hadoop Connector Gives R users high performance native access to Hadoop Distributed File System (HDFS) and MapReduce programming framework.
This is a  R package
From the datasheet at
%d bloggers like this: