Data Frame in Python

Exploring some Python Packages and R packages to move /work with both Python and R without melting your brain or exceeding your project deadline


If you liked the data.frame structure in R, you have some way to work with them at a faster processing speed in Python.

Here are three packages that enable you to do so-

(1) pydataframe

An implemention of an almost R like DataFrame object. (install via Pypi/Pip: “pip install pydataframe”)


        u = DataFrame( { "Field1": [1, 2, 3],
                        "Field2": ['abc', 'def', 'hgi']},
                         ['Field1', 'Field2']
                         ["rowOne", "rowTwo", "thirdRow"])

A DataFrame is basically a table with rows and columns.

Columns are named, rows are numbered (but can be named) and can be easily selected and calculated upon. Internally, columns are stored as 1d numpy arrays. If you set row names, they’re converted into a dictionary for fast access. There is a rich subselection/slicing API, see help(DataFrame.get_item) (it also works for setting values). Please note that any slice get’s you another DataFrame, to access individual entries use get_row(), get_column(), get_value().

DataFrames also understand basic arithmetic and you can either add (multiply,…) a constant value, or another DataFrame of the same size / with the same column names, like this:

#multiply every value in ColumnA that is smaller than 5 by 6.
my_df[my_df[:,'ColumnA'] < 5, 'ColumnA'] *= 6

#you always need to specify both row and column selectors, use : to mean everything
my_df[:, 'ColumnB'] = my_df[:,'ColumnA'] + my_df[:, 'ColumnC']

#let's take every row that starts with Shu in ColumnA and replace it with a new list (comprehension)
select = my_df.where(lambda row: row['ColumnA'].startswith('Shu'))
my_df[select, 'ColumnA'] = [row['ColumnA'].replace('Shu', 'Sha') for row in my_df[select,:].iter_rows()]

Dataframes talk directly to R via rpy2 (rpy2 is not a prerequiste for the library!)


(2) pandas

Library Highlights

  • A fast and efficient DataFrame object for data manipulation with integrated indexing;
  • Tools for reading and writing data between in-memory data structures and different formats: CSV and text files, Microsoft Excel, SQL databases, and the fast HDF5 format;
  • Intelligent data alignment and integrated handling of missing data: gain automatic label-based alignment in computations and easily manipulate messy data into an orderly form;
  • Flexible reshaping and pivoting of data sets;
  • Intelligent label-based slicing, fancy indexing, and subsetting of large data sets;
  • Columns can be inserted and deleted from data structures for size mutability;
  • Aggregating or transforming data with a powerful group by engine allowing split-apply-combine operations on data sets;
  • High performance merging and joining of data sets;
  • Hierarchical axis indexing provides an intuitive way of working with high-dimensional data in a lower-dimensional data structure;
  • Time series-functionality: date range generation and frequency conversion, moving window statistics, moving window linear regressions, date shifting and lagging. Even create domain-specific time offsets and join time series without losing data;
  • The library has been ruthlessly optimized for performance, with critical code paths compiled to C;
  • Python with pandas is in use in a wide variety of academic and commercial domains, including Finance, Neuroscience, Economics, Statistics, Advertising, Web Analytics, and more.

Why not R?

First of all, we love open source R! It is the most widely-used open source environment for statistical modeling and graphics, and it provided some early inspiration for pandas features. R users will be pleased to find this library adopts some of the best concepts of R, like the foundational DataFrame (one user familiar with R has described pandas as “R data.frame on steroids”). But pandas also seeks to solve some frustrations common to R users:

  • R has barebones data alignment and indexing functionality, leaving much work to the user. pandas makes it easy and intuitive to work with messy, irregularly indexed data, like time series data. pandas also provides rich tools, like hierarchical indexing, not found in R;
  • R is not well-suited to general purpose programming and system development. pandas enables you to do large-scale data processing seamlessly when developing your production applications;
  • Hybrid systems connecting R to a low-productivity systems language like Java, C++, or C# suffer from significantly reduced agility and maintainability, and you’re still stuck developing the system components in a low-productivity language;
  • The “copyleft” GPL license of R can create concerns for commercial software vendors who want to distribute R with their software under another license. Python and pandas use more permissive licenses.

(3) datamatrix

datamatrix 0.8

A Pythonic implementation of R’s data.frame structure.

Latest Version: 0.9

This module allows access to comma- or other delimiter separated files as if they were tables, using a dictionary-like syntax. DataMatrix objects can be manipulated, rows and columns added and removed, or even transposed


Modeling in Python

Continue reading “Data Frame in Python”

Saving Output in R for Presentations

While SAS language has a beautifully designed ODS (Output Delivery System) for saving output from certain analysis in excel files (and html and others), in R one can simply use the object, put it in a write.table and save it a csv file using the file parameter within write.table.

As a business analytics consultant, the output from a Proc Means, Proc Freq (SAS) or a summary/describe/table command (in R) is to be presented as a final report. Copying and pasting is not feasible especially for large amounts of text, or remote computers.

Using the following we can simple save the output  in R


> getwd()
[1] “C:/Users/KUs/Desktop/Ajay”
> setwd(“C:\Users\KUs\Desktop”)

#We shifted the directory, so we can save output without putting the entire path again and again for each step.

#I have found the summary command most useful for initial analysis and final display (particularly during the data munging step)


# I assigned a new object to the analysis step (summary), it could also be summary,names, describe (HMisc) or table (for frequency analysis),
> write.table(nams,sep=”,”,file=”output.csv”)

Note: This is for basic beginners in R using it for business analytics dealing with large number of variables.


pps: Note

If you have a large number of files in a local directory to be read in R, you can avoid typing the entire path again and again by modifying the file parameter in the read.table and changing the working directory to that folder





and so on…

maybe there is a better approach somewhere on Stack Overflow or R help, but this will work just as well.

you can then merge the objects created ajayt1 and ajayt2… (to be continued)

Data Quality in R #rstats

Many Data Quality Formats give problems when importing in your statistical software.A statistical software is quite unable to distingush between $1,000, 1000% and 1,000 and 1000 and will treat the former three as character variables while the third as a numeric variable by default. This issue is further compounded by the numerous ways we can represent date-time variables.

The good thing is for specific domains like finance and web analytics, even these weird data input formats are fixed, so we can fix up a list of handy data quality conversion functions in R for reference.


After much muddling about with coverting internet formats (or data used in web analytics) (mostly time formats without date like 00:35:23)  into data frame numeric formats, I found that the way to handle Date-Time conversions in R is

Dataset$Var2= strptime(as.character(Dataset$Var1),”%M:%S”)

The problem with this approach is you will get the value as a Date Time format (02/31/2012 04:00:45-  By default R will add today’s date to it.)  while you are interested in only Time Durations (4:00:45 or actually just the equivalent in seconds).

this can be handled using the as.difftime function


or to get purely numeric values so we can do numeric analysis (like summary)


(#Maybe there is  a more elegant way here- but I dont know)

The kind of data is usually one we get in web analytics for average time on site , etc.







for factor variables

Dataset$Var2= as.numeric(as.character(Dataset$Var1))



Dataset$Var2= as.numeric(paste(Dataset$Var1))


Slight problem is suppose there is data like 1,504 – it will be converted to NA instead of 1504

The way to solve this is use the nice gsub function ONLy on that variable. Since the comma is also the most commonly used delimiter , you dont want to replace all the commas, just only the one in that variable.




Now lets assume we have data in the form of % like 0.00% , 1.23%, 3.5%

again we use the gsub function to replace the % value in the string with  (nothing).





If you simply do the following for a factor variable, it will show you the level not the value. This can create an error when you are reading in CSV data which may be read as character or factor data type.

Dataset$Var2= as.numeric(Dataset$Var1)

An additional way is to use substr (using substr( and concatenate (using paste) for manipulating string /character variables.


iris$sp=substr(iris$Species,1,3) –will reduce the famous Iris species into three digits , without losing any analytical value.

The other issue is with missing values, and na.rm=T helps with getting summaries of numeric variables with missing values, we need to further investigate how suitable, na.omit functions are for domains which have large amounts of missing data and need to be treated.



Facebook to Google Plus Migration

and there is a new tool on that already but you are on your own if your data gets redirected. Does Chrome take legal liability for malware extensions? Dunno-and yes it works on Chrome alone (at the point of speaking)


Facebook Friend Exporter

Facebook Friend Exporter
Verified author:
Get *your* data contact out of Facebook to Google Contacts or CSV, whether they want you to or not.
103 ratings
5,527 users
Get *your* data contact out of Facebook, whether they want you to or not. You gave them your friends and allowed them to store that data, and you have right to take it back out! Facebook doesn't own my friends. Only available in English Facebook. Any other language will not work.

SOURCE CODE: (GitHub) fb-exporter

 1 - Must have English version of Facebook for this to work (you can switch)
 2 - Do not enable SSL for Facebook use HTTP not HTTPS
 3 - If you need any help running this, contact me. Commenting below will be lost.
 4 - An "Export" button will appear on Facebooks toolbar after refresh once installed.
 5 - Please disable all Facebook Extensions that you have downloaded, many of them affect the page. For example "Better Facebook" breaks this extension.

This extension will allow you to get your friends information that they shared to you: Continue reading "Facebook to Google Plus Migration"

Google unleashes Fusion Tables

I just discovered Fusion Tables. There is life beyond the amazing Jeff’s Amazon Ec2/s3 after all!

Check out

Gather, visualize and share data online

Don’t have a Google Account?
Create one now

  • Visualize and publish your data as maps, timelines and charts
  • Host your data tables online
  • Combine data from multiple people

data table turns into map

Google Fusion Tables is a modern data management and publishing web application that makes it easy
to host, manage, collaborate on, visualize, and publish data tables online.

What can I do with Google Fusion Tables?

Import your own data
Upload data tables from spreadsheets or CSV files, even KML. Developers can use the Fusion Tables API to insert, update, delete and query data programmatically. You can export your data as CSV or KML too.

Visualize it instantly
See the data on a map or as a chart immediately. Use filters for more selective visualizations.

Publish your visualization on other web properties
Now that you’ve got that nice map or chart of your data, you can embed it in a web page or blog post. Or send a link by email or IM. It will always display the latest data values from your table and helps you communicate your story more easily.

Look at the Fusion Tables Example Gallery


If you are worried about closing down, heres a snapshot of Fusion Table Public datasets.


LibreOffice Stable Release launched

Non Oracle Open Office completes important milestone- from the press release

The Document Foundation launches LibreOffice 3.3

The first stable release of the free office suite is available for download

The Internet, January 25, 2011 – The Document Foundation launches LibreOffice 3.3, the first stable release of the free office suite developed by the community. In less than four months, the number of developers hacking LibreOffice has grown from less than twenty in late September 2010, to well over one hundred today. This has allowed us to release ahead of the aggressive schedule set by the project.

Not only does it ship a number of new and original features, LibreOffice 3.3 is also a significant achievement for a number of reasons:

– the developer community has been able to build their own and independent process, and get up and running in a very short time (with respect to the size of the code base and the project’s strong ambitions);

– thanks to the high number of new contributors having been attracted into the project, the source code is quickly undergoing a major clean-up to provide a better foundation for future development of LibreOffice;

– the Windows installer, which is going to impact the largest and most diverse user base, has been integrated into a single build containing all language versions, thus reducing the size for download sites from 75 to 11GB, making it easier for us to deploy new versions more rapidly and lowering the carbon footprint of the entire infrastructure.

Caolán McNamara from RedHat, one of the developer community leaders, comments, “We are excited: this is our very first stable release, and therefore we are eager to get user feedback, which will be integrated as soon as possible into the code, with the first enhancements being released in February. Starting from March, we will be moving to a real time-based, predictable, transparent and public release schedule, in accordance with Engineering Steering Committee’s goals and users’ requests”. The LibreOffice development roadmap is available at

LibreOffice 3.3 brings several unique new features. The 10 most-popular among community members are, in no particular order:

  1. the ability to import and work with SVG files;
  2. an easy way to format title pages and their numbering in Writer;
  3. a more-helpful Navigator Tool for Writer;
  4. improved ergonomics in Calc for sheet and cell management;
  5. and Microsoft Works and Lotus Word Pro document import filters.

In addition, many great extensions are now bundled, providing

PDF import,

a slide-show presenter console,

a much improved report builder, and more besides.

A more-complete and detailed list of all the new features offered by LibreOffice 3.3 is viewable on the following web page:

LibreOffice 3.3 also provides all the new features of 3.3, such as new custom properties handling; embedding of standard PDF fonts in PDF documents; new Liberation Narrow font; increased document protection in Writer and Calc; auto decimal digits for “General” format in Calc; 1 million rows in a spreadsheet; new options for CSV import in Calc; insert drawing objects in Charts; hierarchical axis labels for Charts; improved slide layout handling in Impress; a new easier-to-use print interface; more options for changing case; and colored sheet tabs in Calc. Several of these new features were contributed by members of the LibreOffice team prior to the formation of The Document Foundation.

LibreOffice hackers will be meeting at FOSDEM in Brussels on February 5 and 6, and will be presenting their work during a one-day workshop on February 6, with speeches and hacking sessions coordinated by several members of the project.

The home of The Document Foundation is at

The home of LibreOffice is at where the download page has been redesigned by the community to be more user-friendly.

*** About The Document Foundation

The Document Foundation has the mission of facilitating the evolution of the OOo Community into a new, open, independent, and meritocratic organization within the next few months. An independent Foundation is a better reflection of the values of our contributors, users and supporters, and will enable a more effective, efficient and transparent community. TDF will protect past investments by building on the achievements of the first decade, will encourage wide participation within the community, and will co-ordinate activity across the community.

*** Media Contacts for TDF

Florian Effenberger (Germany)

Mobile: +49 151 14424108 – E-mail:

Olivier Hallot (Brazil)

Mobile: +55 21 88228812 – E-mail:

Charles H. Schulz (France)

Mobile: +33 6 98655424 – E-mail:

Italo Vignoli (Italy)

Mobile: +39 348 5653829 – E-mail: