Interview Jeroen Ooms OpenCPU #rstats

Below an interview with Jeroen Ooms, a pioneer in R and web development. Jeroen contributes to R by developing packages and web applications for multiple projects.

jeroen

Ajay- What are you working on these days?
Jeroen- My research revolves around challenges and opportunities of using R in embedded applications and scalable systems. After developing numerous web applications, I started the OpenCPU project about 1.5 year ago, as a first attempt at a complete framework for proper integration of R in web services. As I work on this, I run into challenges that shape my research, and sometimes become projects in their own. For example, the RAppArmor package provides the security framework for OpenCPU, but can be used for other purposes as well. RAppArmor interfaces to some methods in the Linux kernel, related to setting security and resource limits. The github page contains the source code, installation instructions, video demo’s, and a draft of a paper for the journal of statistical software. Another example of a problem that appeared in OpenCPU is that applications that used to work were breaking unexpectedly later on due to changes in dependency packages on CRAN. This is actually a general problem that affects almost all R users, as it compromises reliability of CRAN packages and reproducibility of results. In a paper (forthcoming in The R Journal), this problem is discussed in more detail and directions for improvement are suggested. A preprint of the paper is available on arXiv: http://arxiv.org/abs/1303.2140.

I am also working on software not directly related to R. For example, in project Mobilize we teach high school students in Los Angeles the basics of collecting and analyzing data. They use mobile devices to upload surveys with questions, photos, gps, etc using the ohmage software. Within Mobilize and Ohmage, I am in charge of developing web applications that help students to visualize the data they collaboratively collected. One public demo with actual data collected by students about snacking behavior is available at: http://jeroenooms.github.com/snack. The application allows students to explore their data, by filtering, zooming, browsing, comparing etc. It helps students and teachers to access and learn from their data, without complicated tools or programming. This approach would easily generalize to other fields, like medical data or BI. The great thing about this application is that it is fully client side; the backend is simply a CSV file. So it is very easy to deploy and maintain.

Ajay-What’s your take on difference between OpenCPU and RevoDeployR ?
Jeroen- RevoDeployR and OpenCPU both provide a system for development of R web applications, but in a fairly different context. OpenCPU is open source and written completely in R, whereas RevoDeployR is proprietary and written in Java. I think Revolution focusses more on a complete solution in a corporate environment. It integrates with the Revolution Enterprise suite and their other big data products, and has built-in functionality for authentication, managing privileges, server administration, support for MS Windows, etc. OpenCPU on the other hand is much smaller and should be seen as just a computational backend, analogous to a database backend. It exposes a clean HTTP api to call R functions to be embedded in larger systems, but is not a complete end-product in itself.

OpenCPU is designed to make it easy for a statistician to expose statistical functionality that will used by web developers that do not need to understand or learn R. One interesting example is how we use OpenCPU inside OpenMHealth, a project that designs an architecture for mobile applications in the health domain. Part of the architecture are so called “Data Processing Units”, aka DPU’s. These are simple, modular I/O units that do various sorts of data processing, similar to unix tools, but then over HTTPS. For example, the mobility dpu is used to calculate distances between gps coordinates via a simple http call, which OpenCPU maps to the corresponding R function implementing the harversine formula.

Ajay- What are your views on Shiny by RStudio?
Jeroen- RStudio seems very promising. Like Revolution, they deliver a more full featured product than any of my projects. However, RStudio is completely open source, which is great because it allows anyone to leverage the software and make it part of their projects. I think this is one of the reasons why the product has gotten a lot of traction in the community, which has in turn provided RStudio with great feedback to further improve the product. It illustrates how open source can be a win-win situation. I am currently developing a package to run OpenCPU inside RStudio, which will make developing and running OpenCPU apps much easier.

Ajay- Are you still developing excellent RApache web apps (which IMHO could be used for visualization like business intelligence tools?)
Jeroen–   The OpenCPU framework was a result of those webapps (including ggplot2 for graphical exploratory analysis, lme4 for online random effects modeling, stockplot for stock predictions and irttool.com, an R web application for online IRT analysis). I started developing some of those apps a couple of years ago, and realized that I was repeating a large share of the infrastructure for each application. Based on those experiences I extracted a general purpose framework. Once the framework is done, I’ll go back to developing applications 🙂

Ajay- You have helped  build web apps, openCPU, RAppArmor, Ohmage , Snack , mobility apps .What’s your thesis topic on?
Jeroen- My thesis revolves around all of the technical and social challenges of moving statistical computing beyond the academic and private labs, into more public, accessible and social places. Currently statistics is still done to mostly manually by specialists using software to load data, perform some analysis, and produce results that end up in a report or presentation. There are great opportunities to leverage the open source analysis and visualization methods that R has to offer as part of open source stacks, services, systems and applications. However, several problems need to be addressed before this can actually be put in production. I hope my doctoral research will contribute to taking a step in that direction.

Ajay- R is RAM constrained but the cloud offers lots of RAM. Do you see R increasing in usage on the cloud? why or why not?
Jeroen-   Statistical computing can greatly benefit from the resources that the cloud has to offer. Software like OpenCPU, RStudio, Shiny and RevoDeployR all provide some approach of moving computation to centralized servers. This is only the beginning. Statisticians, researchers and analysts will continue to increasingly share and publish data, code and results on social cloud-based computing platforms. This will address some of the hardware challenges, but also contribute towards reproducible research and further socialize data analysis, i.e. improve learning, collaboration and integration.

That said, the cloud is not going to solve all problems. You mention the need for more memory, but that is only one direction to scale in. Some of the issues we need to address are more fundamental and require new algorithms, different paradigms, or a cultural change. There are many exciting efforts going on that are at least as relevant as big hardware. Gelman’s mc-stan implements a new MC method that makes Bayesian inference easier and faster while supporting more complex models. This is going to make advanced Bayesian methods more accessible to applied researchers, i.e. scale in terms of complexity and applicability. Also Javascript is rapidly becoming more interesting. Performance of Google’s javascript engine V8 outruns any other scripting language at this point, and the huge Javascript community provides countless excellent software libraries. For example D3 is a graphics library that is about to surpass R in terms of functionality, reliability and user base. The snack viz that I developed for Mobilize is based largely on D3. Finally, Julia is another young language for technical computing with lots of activity and very smart people behind it. These developments are just as important for the future of statistical computing as big data solutions.

About-
You can read more on Jeroen and his work at  http://jeroenooms.github.com/ and reach out to him here http://www.linkedin.com/in/datajeroen

Latest R Journal

Including juicy stuff on using a cluster of Apple Machines for grid computing , seasonality forecasting (Yet Another Package For Time Series )

But I kind of liked Sumo too-

https://code.google.com/p/sumo/

Sumo is a fully-functional web application template that exposes an authenticated user’s R session within java server pages.

Sumo: An Authenticating Web Application with an Embedded R Session by Timothy T. Bergsma and Michael S. Smith Abstract Sumo is a web application intended as a template for developers. It is distributed as a Java ‘war’ file that deploys automatically when placed in a Servlet container’s ‘webapps’
directory. If a user supplies proper credentials, Sumo creates a session-specific Secure Shell connection to the host and a user-specific R session over that connection. Developers may write dynamic server pages that make use of the persistent R session and user-specific file space.

and for Apple fanboys-

We created the xgrid package (Horton and Anoke, 2012) to provide a simple interface to this distributed computing system. The package facilitates use of an Apple Xgrid for distributed processing of a simulation with many independent repetitions, by simplifying job submission (or grid stuffing) and collation of results. It provides a relatively thin but useful layer between R and Apple’s ‘xgrid’ shell command, where the user constructs input scripts to be run remotely. A similar set of routines, optimized for parallel estimation of JAGS (just another Gibbs sampler) models is available within the runjags package (Denwood, 2010). However, with the exception of runjags, none of the previously mentioned packages support parallel computation over an Apple Xgrid.

Hmm I guess parallel computing enabled by Wifi on mobile phones would be awesome too ! So would be anything using iOS . See the rest of the R Journal at http://journal.r-project.org/current.html

RJournal_2012-1

Protected: Converting SAS language code to Java

This content is password protected. To view it please enter your password below:

Interview Michal Kosinski , Concerto Web Based App using #Rstats

Here is an interview with Michal Kosinski , leader of the team that has created Concerto – a web based application using R. What is Concerto? As per http://www.psychometrics.cam.ac.uk/page/300/concerto-testing-platform.htm

Concerto is a web based, adaptive testing platform for creating and running rich, dynamic tests. It combines the flexibility of HTML presentation with the computing power of the R language, and the safety and performance of the MySQL database. It’s totally free for commercial and academic use, and it’s open source

Ajay-  Describe your career in science from high school to this point. What are the various stats platforms you have trained on- and what do you think about their comparative advantages and disadvantages?  

Michal- I started with maths, but quickly realized that I prefer social sciences – thus after one year, I switched to a psychology major and obtained my MSc in Social Psychology with a specialization in Consumer Behaviour. At that time I was mostly using SPSS – as it was the only statistical package that was taught to students in my department. Also, it was not too bad for small samples and the rather basic analyses I was performing at that time.

 

My more recent research performed during my Mphil course in Psychometrics at Cambridge University followed by my current PhD project in social networks and research work at Microsoft Research, requires significantly more powerful tools. Initially, I tried to squeeze as much as possible from SPSS/PASW by mastering the syntax language. SPSS was all I knew, though I reached its limits pretty quickly and was forced to switch to R. It was a pretty dreary experience at the start, switching from an unwieldy but familiar environment into an unwelcoming command line interface, but I’ve quickly realized how empowering and convenient this tool was.

 

I believe that a course in R should be obligatory for all students that are likely to come close to any data analysis in their careers. It is really empowering – once you got the basics you have the potential to use virtually any method there is, and automate most tasks related to analysing and processing data. It is also free and open-source – so you can use it wherever you work. Finally, it enables you to quickly and seamlessly migrate to other powerful environments such as Matlab, C, or Python.

Ajay- What was the motivation behind building Concerto?

Michal- We deal with a lot of online projects at the Psychometrics Centre – one of them attracted more than 7 million unique participants. We needed a powerful tool that would allow researchers and practitioners to conveniently build and deliver online tests.

Also, our relationships with the website designers and software engineers that worked on developing our tests were rather difficult. We had trouble successfully explaining our needs, each little change was implemented with a delay and at significant cost. Not to mention the difficulties with embedding some more advanced methods (such as adaptive testing) in our tests.

So we created a tool allowing us, psychometricians, to easily develop psychometric tests from scratch an publish them online. And all this without having to hire software developers.

Ajay -Why did you choose R as the background for Concerto? What other languages and platforms did you consider. Apart from Concerto, how else do you utilize R in your center, department and University?

Michal- R was a natural choice as it is open-source, free, and nicely integrates with a server environment. Also, we believe that it is becoming a universal statistical and data processing language in science. We put increasing emphasis on teaching R to our students and we hope that it will replace SPSS/PASW as a default statistical tool for social scientists.

Ajay -What all can Concerto do besides a computer adaptive test?

Michal- We did not plan it initially, but Concerto turned out to be extremely flexible. In a nutshell, it is a web interface to R engine with a built-in MySQL database and easy-to-use developer panel. It can be installed on both Windows and Unix systems and used over the network or locally.

Effectively, it can be used to build any kind of web application that requires a powerful and quickly deployable statistical engine. For instance, I envision an easy to use website (that could look a bit like SPSS) allowing students to analyse their data using a web browser alone (learning the underlying R code simultaneously). Also, the authors of R libraries (or anyone else) could use Concerto to build user-friendly web interfaces to their methods.

Finally, Concerto can be conveniently used to build simple non-adaptive tests and questionnaires. It might seem to be slightly less intuitive at first than popular questionnaire services (such us my favourite Survey Monkey), but has virtually unlimited flexibility when it comes to item format, test flow, feedback options, etc. Also, it’s free.

Ajay- How do you see the cloud computing paradigm growing? Do you think browser based computation is here to stay?

Michal – I believe that cloud infrastructure is the future. Dynamically sharing computational and network resources between online service providers has a great competitive advantage over traditional strategies to deal with network infrastructure. I am sure the security concerns will be resolved soon, finishing the transformation of the network infrastructure as we know it. On the other hand, however, I do not see a reason why client-side (or browser) processing of the information should cease to exist – I rather think that the border between the cloud and personal or local computer will continually dissolve.

About

Michal Kosinski is Director of Operations for The Psychometrics Centre and Leader of the e-Psychometrics Unit. He is also a research advisor to the Online Services and Advertising group at the Microsoft Research Cambridge, and a visiting lecturer at the Department of Mathematics in the University of Namur, Belgium. You can read more about him at http://www.michalkosinski.com/

You can read more about Concerto at http://code.google.com/p/concerto-platform/ and http://www.psychometrics.cam.ac.uk/page/300/concerto-testing-platform.htm

Amazon gives away 750 hours /month of Windows based computing

and an additional 750 hours /month of Linux based computing. The windows instance is really quite easy for users to start getting the hang of cloud computing. and it is quite useful for people to tinker around, given Google’s retail cloud offerings are taking so long to hit the market

But it is only for new users.

http://aws.typepad.com/aws/2012/01/aws-free-usage-tier-now-includes-microsoft-windows-on-ec2.html

WS Free Usage Tier now Includes Microsoft Windows on EC2

The AWS Free Usage Tier now allows you to run Microsoft Windows Server 2008 R2 on an EC2 t1.micro instance for up to 750 hours per month. This benefit is open to new AWS customers and to those who are already participating in the Free Usage Tier, and is available in all AWS Regions with the exception of GovCloud. This is an easy way for Windows users to start learning about and enjoying the benefits of cloud computing with AWS.

The micro instances provide a small amount of consistent processing power and the ability to burst to a higher level of usage from time to time. You can use this instance to learn about Amazon EC2, support a development and test environment, build an AWS application, or host a web site (or all of the above). We’ve fine-tuned the micro instances to make them even better at running Microsoft Windows Server.

You can launch your instance from the AWS Management Console:

We have lots of helpful resources to get you started:

Along with 750 instance hours of Windows Server 2008 R2 per month, the Free Usage Tier also provides another 750 instance hours to run Linux (also on a t1.micro), Elastic Load Balancer time and bandwidth, Elastic Block Storage, Amazon S3 Storage, and SimpleDB storage, a bunch of Simple Queue Service and Simple Notification Service requests, and some CloudWatch metrics and alarms (see the AWS Free Usage Tier page for details). We’ve also boosted the amount of EBS storage space offered in the Free Usage Tier to 30GB, and we’ve doubled the I/O requests in the Free Usage Tier, to 2 million.

 

Google Dart a new programming language for web applications

From Google a new language for structured web applications-

http://www.dartlang.org/docs/technical-overview/index.html ( a rather unstructured website, if I may add)

Dart is a new class-based programming language for creating structured web applications. Developed with the goals of simplicity, efficiency, and scalability, the Dart language combines powerful new language features with familiar language constructs into a clear, readable syntax.

  • structured yet flexible programming language for the web.
  • Make Dart feel familiar and natural to programmers and thus easy to learn.
  • Ensure that all Dart language constructs allow high performance and fast application startup.
  • Make Dart appropriate for the full range of devices on the web—including phones, tablets, laptops, and servers.
  • Provide tools that make Dart run fast across all major modern browsers.

These design goals address the following problems currently facing web developers:

  • Small scripts often evolve into large web applications with no apparent structure—they’re hard to debug and difficult to maintain. In addition, these monolithic apps can’t be split up so that different teams can work on them independently. It’s difficult to be productive when a web application gets large.
  • Scripting languages are popular because their lightweight nature makes it easy to write code quickly. Generally, the contracts with other parts of an application are conveyed in comments rather than in the language structure itself. As a result, it’s difficult for someone other than the author to read and maintain a particular piece of code.
  • With existing languages, the developer is forced to make a choice between static and dynamic languages. Traditional static languages require heavyweight toolchains and a coding style that can feel inflexible and overly constrained.
  • Developers have not been able to create homogeneous systems that encompass both client and server, except for a few cases such as Node.js and Google Web Toolkit (GWT).
  • Different languages and formats entail context switches that are cumbersome and add complexity to the coding process.

Interview Mike Boyarski Jaspersoft

Here is an interview with Mike Boyarski , Director Product Marketing at Jaspersoft

.

 

the largest BI community with over 14 million downloads, nearly 230,000 registered members, representing over 175,000 production deployments, 14,000 customers, across 100 countries.

Ajay- Describe your career in science from Biology to marketing great software.
Mike- I studied Biology with the assumption I’d pursue a career in medicine. It took about 2 weeks during an internship at a Los Angeles hospital to determine I should do something else.  I enjoyed learning about life science, but the whole health care environment was not for me.  I was initially introduced to enterprise-level software while at Applied Materials within their Microcontamination group.  I was able to assist with an internal application used to collect contamination data.  I later joined Oracle to work on an Oracle Forms application used to automate the production of software kits (back when documentation and CDs had to be physically shipped to recognize revenue). This gave me hands on experience with Oracle 7, web application servers, and the software development process.
I then transitioned to product management for various products including application servers, software appliances, and Oracle’s first generation SaaS based software infrastructure. In 2006, with the Siebel and PeopleSoft acquisitions underway, I moved on to Ingres to help re-invigorate their solid yet antiquated technology. This introduced me to commercial open source software and the broader Business Intelligence market.  From Ingres I joined Jaspersoft, one of the first and most popular open source Business Intelligence vendors, serving as head of product marketing since mid 2009.
Ajay- Describe some of the new features in Jaspersoft 4.1 that help differentiate it from the rest of the crowd. What are the exciting product features we can expect from Jaspersoft down the next couple of years.
Mike- Jaspersoft 4.1 was an exciting release for our customers because we were able to extend the latest UI advancements in our ad hoc report designer to the data analysis environment. Now customers can use a unified intuitive web-based interface to perform several powerful and interactive analytic functions across any data source, whether its relational, non-relational, or a Big Data source.
 The reality is that most (roughly 70%) of todays BI adoption is in the form of reports and dashboards. These tools are used to drive and measure an organizations business, however, data analysis presents the most strategic opportunity for companies because it can identify new opportunities, efficiencies, and competitive differentiation.  As more data comes online, the difference between those companies that are successful and those that are not will likely be attributed to their ability to harness data analysis techniques to drive and improve business performance. Thus, with Jaspersoft 4.1, and our improved ad hoc reporting and analysis UI we can effectively address a broader set of BI requirements for organizations of all sizes.
Ajay-  What do you think is a good metric to measure influence of an open source software product – is it revenue or is it number of downloads or number of users. How does Jaspersoft do by these counts.
Mike- History has shown that open source software is successful as a “bottoms up” disrupter within IT or the developer market.  Today, many new software projects and startup ventures are birthed on open source software, often initiated with little to no budget. As the organization achieves success with a particular project, the next initiative tends to be larger and more strategic, often displacing what was historically solved with a proprietary solution. These larger deployments strengthen the technology over time.
Thus, the more proven and battle tested an open source solution is, often measured via downloads, deployments, community size, and community activity, usually equates to its long term success. Linux, Tomcat, and MySQL have plenty of statistics to model this lifecycle. This model is no different for open source BI.
The success to date of Jaspersoft is directly tied to its solid proven technology and the vibrancy of the community.  We proudly and openly claim to have the largest BI community with over 14 million downloads, nearly 230,000 registered members, representing over 175,000 production deployments, 14,000 customers, across 100 countries.  Every day, 30,000 developers are using Jaspersoft to build BI applications.  Behind Excel, its hard to imagine a more widely used BI tool in the market.  Jaspersoft could not reach these kind of numbers with crippled or poorly architected software.
Ajay- What are your plans for leveraging cloud computing, mobile and tablet platforms and for making Jaspersoft more easy and global  to use.
%d bloggers like this: