WordPress.com Analytics

The Analytics (or stats) dashboard at WordPress.com continues to disappoint, and is a major reason for people to move out of WordPress.com hosting (since they need better analytics like that by Google Analytics which cant be enabled on the default mode)

Its not really beautiful unlike the rest of WordPress Universe!

It can be made better if people try harder! Analytics matters

Here are some points

1) Bar charts and Histograms are not really the best way to visualize trends across time

2) Location Analytics is limited to just country level analysis and the heatmap (?) is aweful in terms of distinguishing gradients 

3) Referrers Tab needs to do a better job on distinguishing between mobile and non mobile traffic, social and non social traffic (and there are better ways to visualize than just a simple list)!

4)  I cant even export my traffic stats (and forget an api !) so I am stuck with the bad data viz here

R for Business Analytics- Book by Ajay Ohri

So the cover art is ready, and if you are a reviewer, you can reserve online copies of the book I have been writing for past 2 years. Special thanks to my mentors, detractors, readers and students- I owe you a beer!

You can also go here-

http://www.springer.com/statistics/book/978-1-4614-4342-1

 

R for Business Analytics

R for Business Analytics

Ohri, Ajay

2012, 2012, XVI, 300 p. 208 illus., 162 in color.

Hardcover
Information

ISBN 978-1-4614-4342-1

Due: September 30, 2012

(net)

approx. 44,95 €
  • Covers full spectrum of R packages related to business analytics
  • Step-by-step instruction on the use of R packages, in addition to exercises, references, interviews and useful links
  • Background information and exercises are all applied to practical business analysis topics, such as code examples on web and social media analytics, data mining, clustering and regression models

R for Business Analytics looks at some of the most common tasks performed by business analysts and helps the user navigate the wealth of information in R and its 4000 packages.  With this information the reader can select the packages that can help process the analytical tasks with minimum effort and maximum usefulness. The use of Graphical User Interfaces (GUI) is emphasized in this book to further cut down and bend the famous learning curve in learning R. This book is aimed to help you kick-start with analytics including chapters on data visualization, code examples on web analytics and social media analytics, clustering, regression models, text mining, data mining models and forecasting. The book tries to expose the reader to a breadth of business analytics topics without burying the user in needless depth. The included references and links allow the reader to pursue business analytics topics.

 

This book is aimed at business analysts with basic programming skills for using R for Business Analytics. Note the scope of the book is neither statistical theory nor graduate level research for statistics, but rather it is for business analytics practitioners. Business analytics (BA) refers to the field of exploration and investigation of data generated by businesses. Business Intelligence (BI) is the seamless dissemination of information through the organization, which primarily involves business metrics both past and current for the use of decision support in businesses. Data Mining (DM) is the process of discovering new patterns from large data using algorithms and statistical methods. To differentiate between the three, BI is mostly current reports, BA is models to predict and strategize and DM matches patterns in big data. The R statistical software is the fastest growing analytics platform in the world, and is established in both academia and corporations for robustness, reliability and accuracy.

Content Level » Professional/practitioner

Keywords » Business Analytics – Data Mining – Data Visualization – Forecasting – GUI – Graphical User Interface – R software – Text Mining

Related subjects » Business, Economics & Finance – Computational Statistics – Statistics

TABLE OF CONTENTS

Why R.- R Infrastructure.- R Interfaces.- Manipulating Data.- Exploring Data.- Building Regression Models.- Data Mining using R.- Clustering and Data Segmentation.- Forecasting and Time-Series Models.- Data Export and Output.- Optimizing your R Coding.- Additional Training Literature.- Appendix

Interview BigML.com

Here is an interview with Charlie Parker, head of large scale online algorithms at http://bigml.com

Ajay-  Describe your own personal background in scientific computing, and how you came to be involved with machine learning, cloud computing and BigML.com

Charlie- I am a machine learning Ph.D. from Oregon State University. Francisco Martin (our founder and CEO), Adam Ashenfelter (the lead developer on the tree algorithm), and myself were all studying machine learning at OSU around the same time. We all went our separate ways after that.

Francisco started Strands and turned it into a 100+ million dollar company building recommender systems. Adam worked for CleverSet, a probabilistic modeling company that was eventually sold to Cisco, I believe. I worked for several years in the research labs at Eastman Kodak on data mining, text analysis, and computer vision.

When Francisco left Strands to start BigML, he brought in Justin Donaldson who is a brilliant visualization guy from Indiana, and an ex-Googler named Jose Ortega who is responsible for most of our data infrastructure. They pulled in Adam and I a few months later. We also have Poul Petersen, a former Strands employee, who manages our herd of servers. He is a wizard and makes everyone else’s life much easier.

Ajay- You use clojure for the back end of BigML.com .Are there any other languages and packages you are considering? What makes clojure such a good fit for cloud computing ?

Charlie- Clojure is a great language because it offers you all of the benefits of Java (extensive libraries, cross-platform compatibility, easy integration with things like Hadoop, etc.) but has the syntactical elegance of a functional language. This makes our code base small and easy to read as well as powerful.

We’ve had occasional issues with speed, but that just means writing the occasional function or library in Java. As we build towards processing data at the Terabyte level, we’re hoping to create a framework that is language-agnostic to some extent. So if we have some great machine learning code in C, for example, we’ll use Clojure to tie everything together, but the code that does the heavy lifting will still be in C. For the API and Web layers, we use Python and Django, and Justin is a huge fan of HaXe for our visualizations.

 Ajay- Current support is for Decision Trees. When can we see SVM, K Means Clustering and Logit Regression?

Charlie- Right now we’re focused on perfecting our infrastructure and giving you new ways to put data in the system, but expect to see more algorithms appearing in the next few months. We want to make sure they are as beautiful and easy to use as the trees are. Without giving too much away, the first new thing we will probably introduce is an ensemble method of some sort (such as Boosting or Bagging). Clustering is a little further away but we’ll get there soon!

Ajay- How can we use the BigML.com API using R and Python.

Charlie- We have a public github repo for the language bindings. https://github.com/bigmlcom/io Right now, there there are only bash scripts but that should change very soon. The python bindings should be there in a matter of days, and the R bindings in probably a week or two. Clojure and Java bindings should follow shortly after that. We’ll have a blog post about it each time we release a new language binding. http://blog.bigml.com/

Ajay-  How can we predict large numbers of observations using a Model  that has been built and pruned (model scoring)?

Charlie- We are in the process of refactoring our backend right now for better support for batch prediction and model evaluation. This is something that is probably only a few weeks away. Keep your eye on our blog for updates!

Ajay-  How can we export models built in BigML.com for scoring data locally.

Charlie- This is as simple as a call to our API. https://bigml.com/developers/models The call gives you a JSON object representing the tree that is roughly equivalent to a PMML-style representation.

About-

You can read about Charlie Parker at http://www.linkedin.com/pub/charles-parker/11/85b/4b5 and the rest of the BigML team at

https://bigml.com/team

 

Using Google Analytics with R

Some code to read in data from Google Analytics data. Some modifications include adding the SSL authentication code and modifying (in bold) the table.id parameter to choose correct website from a GA profile with many websites

The Google Analytics Package files can be downloaded from http://code.google.com/p/r-google-analytics/downloads/list

It provides access to Google Analytics data natively from the R Statistical Computing programming language. You can use this library to retrieve an R data.frame with Google Analytics data. Then perform advanced statistical analysis, like time series analysis and regressions.

Supported Features

  • Access to v2 of the Google Analytics Data Export API Data Feed
  • A QueryBuilder class to simplify creating API queries
  • API response is converted directly into R as a data.frame
  • Library returns the aggregates, and confidence intervals of the metrics, dynamically if they exist
  • Auto-pagination to return more than 10,000 rows of information by combining multiple data requests. (Upper Limit 1M rows)
  • Authorization through the ClientLogin routine
  • Access to all the profiles ids for the authorized user
  • Full documentation and unit tests
Code-

> library(XML)

>

> library(RCurl)

Loading required package: bitops

>

> #Change path name in the following to the folder you downloaded the Google Analytics Package

>

> source(“C:/Users/KUs/Desktop/CANADA/R/RGoogleAnalytics/R/RGoogleAnalytics.R”)

>

> source(“C:/Users/KUs/Desktop/CANADA/R/RGoogleAnalytics/R/QueryBuilder.R”)

> # download the file needed for authentication

> download.file(url=”http://curl.haxx.se/ca/cacert.pem”, destfile=”cacert.pem”)

trying URL ‘http://curl.haxx.se/ca/cacert.pem’ Content type ‘text/plain’ length 215993 bytes (210 Kb) opened

URL downloaded 210 Kb

>

> # set the curl options

> curl <- getCurlHandle()

> options(RCurlOptions = list(capath = system.file(“CurlSSL”, “cacert.pem”,

+ package = “RCurl”),

+ ssl.verifypeer = FALSE))

> curlSetOpt(.opts = list(proxy = ‘proxyserver:port’), curl = curl)

An object of class “CURLHandle” Slot “ref”: <pointer: 0000000006AA2B70>

>

> # 1. Create a new Google Analytics API object

>

> ga <- RGoogleAnalytics()

>

> # 2. Authorize the object with your Google Analytics Account Credentials

>

> ga$SetCredentials(“USERNAME”, “PASSWORD”)

>

> # 3. Get the list of different profiles, to help build the query

>

> profiles <- ga$GetProfileData()

>

> profiles #Error Check to See if we get the right website

$profile AccountName ProfileName TableId

1 dudeofdata.com dudeofdata.com ga:44926237

2 knol.google.com knol.google.com ga:45564890

3 decisionstats.com decisionstats.com ga:46751946

$total.results

total.results

1 3

>

> # 4. Build the Data Export API query

>

> #Modify the start.date and end.date parameters based on data requirements

>

> #Modify the table.id at table.id = paste(profiles$profile[X,3]) to get the X th website in your profile

> # 4. Build the Data Export API query

> query <- QueryBuilder() > query$Init(start.date = “2012-01-09”, + end.date = “2012-03-20”, + dimensions = “ga:date”,

+ metrics = “ga:visitors”,

+ sort = “ga:date”,

+ table.id = paste(profiles$profile[3,3]))

>

>

> #5. Make a request to get the data from the API

>

> ga.data <- ga$GetReportData(query)

[1] “Executing query: https://www.google.com/analytics/feeds/data?start-date=2012%2D01%2D09&end-date=2012%2D03%2D20&dimensions=ga%3Adate&metrics=ga%3Avisitors&sort=ga%3Adate&ids=ga%3A46751946&#8221;

>

> #6. Look at the returned data

>

> str(ga.data)

List of 3

$ data :’data.frame’: 72 obs. of 2 variables: ..

$ ga:date : chr [1:72] “20120109” “20120110” “20120111” “20120112” … ..

$ ga:visitors: num [1:72] 394 405 381 390 323 47 169 67 94 89 …

$ aggr.totals :’data.frame’: 1 obs. of 1 variable: ..

$ aggregate.totals: num 28348

$ total.results: num 72

>

> head(ga.data$data)

ga:date ga:visitors

1 20120109 394

2 20120110 405

3 20120111 381

4 20120112 390

5 20120113 323

6 20120114 47 >

> #Plotting the Traffic >

> plot(ga.data$data[,2],type=”l”)

Update- Some errors come from pasting Latex directly to WordPress. Here is some code , made pretty-r in case you want to play with the GA api

library(XML)

library(RCurl)

#Change path name in the following to the folder you downloaded the Google Analytics Package 

source("C:/Users/KUs/Desktop/CANADA/R/RGoogleAnalytics/R/RGoogleAnalytics.R")

source("C:/Users/KUs/Desktop/CANADA/R/RGoogleAnalytics/R/QueryBuilder.R")
# download the file needed for authentication
download.file(url="http://curl.haxx.se/ca/cacert.pem", destfile="cacert.pem")

# set the curl options
curl <- getCurlHandle()
options(RCurlOptions = list(capath = system.file("CurlSSL", "cacert.pem",
package = "RCurl"),
ssl.verifypeer = FALSE))
curlSetOpt(.opts = list(proxy = 'proxyserver:port'), curl = curl)

# 1. Create a new Google Analytics API object 

ga <- RGoogleAnalytics()

# 2. Authorize the object with your Google Analytics Account Credentials 

ga$SetCredentials("ohri2007@gmail.com", "XXXXXXX")

# 3. Get the list of different profiles, to help build the query

profiles <- ga$GetProfileData()

profiles #Error Check to See if we get the right website

# 4. Build the Data Export API query 

#Modify the start.date and end.date parameters based on data requirements 

#Modify the table.id at table.id = paste(profiles$profile[X,3]) to get the X th website in your profile 
# 4. Build the Data Export API query
query <- QueryBuilder()
query$Init(start.date = "2012-01-09",
                   end.date = "2012-03-20",
                   dimensions = "ga:date",
                   metrics = "ga:visitors",
                   sort = "ga:date",
                   table.id = paste(profiles$profile[3,3]))

#5. Make a request to get the data from the API 

ga.data <- ga$GetReportData(query)

#6. Look at the returned data 

str(ga.data)

head(ga.data$data)

#Plotting the Traffic 

plot(ga.data$data[,2],type="l")

Created by Pretty R at inside-R.org

Predictive Models Ain’t Easy to Deploy

 

This is a guest blog post by Carole Ann Matignon of Sparkling Logic. You can see more on Sparkling Logic at http://my.sparklinglogic.com/

Decision Management is about combining predictive models and business rules to automate decisions for your business. Insurance underwriting, loan origination or workout, claims processing are all very good use cases for that discipline… But there is a hiccup… It ain’t as easy you would expect…

What’s easy?

If you have a neat model, then most tools would allow you to export it as a PMML model – PMML stands for Predictive Model Markup Language and is a standard XML representation for predictive model formulas. Many model development tools let you export it without much effort. Many BRMS – Business rules Management Systems – let you import it. Tada… The model is ready for deployment.

What’s hard?

The problem that we keep seeing over and over in the industry is the issue around variables.

Those neat predictive models are formulas based on variables that may or may not exist as is in your object model. When the variable is itself a formula based on the object model, like the min, max or sum of Dollar amount spent in Groceries in the past 3 months, and the object model comes with transaction details, such that you can compute it by iterating through those transactions, then the problem is not “that” big. PMML 4 introduced some support for those variables.

The issue that is not easy to fix, and yet quite frequent, is when the model development data model does not resemble the operational one. Your Data Warehouse very likely flattened the object model, and pre-computed some aggregations that make the mapping very hard to restore.

It is clearly not an impossible project as many organizations do that today. It comes with a significant overhead though that forces modelers to involve IT resources to extract the right data for the model to be operationalized. It is a heavy process that is well justified for heavy-duty models that were developed over a period of time, with a significant ROI.

This is a show-stopper though for other initiatives which do not have the same ROI, or would require too frequent model refresh to be viable. Here, I refer to “real” model refresh that involves a model reengineering, not just a re-weighting of the same variables.

For those initiatives where time is of the essence, the challenge will be to bring closer those two worlds, the modelers and the business rules experts, in order to streamline the development AND deployment of analytics beyond the model formula. The great opportunity I see is the potential for a better and coordinated tuning of the cut-off rules in the context of the model refinement. In other words: the opportunity to refine the strategy as a whole. Very ambitious? I don’t think so.

About Carole Ann Matignon

http://my.sparklinglogic.com/index.php/company/management-team

Carole-Ann Matignon Print E-mail

Carole-Ann MatignonCarole-Ann Matignon – Co-Founder, President & Chief Executive Officer

She is a renowned guru in the Decision Management space. She created the vision for Decision Management that is widely adopted now in the industry.  Her claim to fame is managing the strategy and direction of Blaze Advisor, the leading BRMS product, while she also managed all the Decision Management tools at FICO (business rules, predictive analytics and optimization). She has a vision for Decision Management both as a technology and a discipline that can revolutionize the way corporations do business, and will never get tired of painting that vision for her audience.  She speaks often at Industry conferences and has conducted university classes in France and Washington DC.

She started her career building advanced systems using all kinds of technologies — expert systems, rules, optimization, dashboarding and cubes, web search, and beta version of database replication. At Cleversys (acquired by Kurt Salmon & Associates), she also conducted strategic consulting gigs around change management.

While playing with advanced software components, she found a passion for technology and joined ILOG (acquired by IBM). She developed a growing interest in Optimization as well as Business Rules. At ILOG, she coined the term BRMS while brainstorming with her Sales counterpart. She led the Presales organization for Telecom in the Americas up until 2000 when she joined Blaze Software (acquired by Brokat Technologies, HNC Software and finally FICO).

Her 360-degree experience allowed her to gain appreciation for all aspects of a software company, giving her a unique perspective on the business. Her technical background kept her very much in touch with technology as she advanced.

App to App Porting

I often wonder why bright, intelligent software programmers go out of their way to write turgid and lengthy words in documentation, do not make  step by step screenshot/slides for Tutorials, and practically force everyone to reinvent the wheel everytime they create a new platform.

Top of my wish list for 2012-

1) Better GUI  for APP CREATION-

example-A GUI utility to create chrome apps something similar to Android  App creator http://www.appinventorbeta.com/about/

2)  Automated Porting or Translation-

An automated appsot app for reading in an iOS app (or iPhone app) and churning out the necessary Android app code. This is similar to translating blogs from one blogging platform to another using Python at http://code.google.com/p/google-blog-converters-appengine/

 

but the woefully underpowered http://wordpress2blogger.appspot.com/ currently allows only downloads less than 1 MB, while WordPress itself allows 15 MB export files.

3) Better interaction between cloud and desktop apps

example – (google docs and libre office)  or webcams to (google hangouts and google voice /youtube)

Are we there yet? Not appy enough !

 

 

Preview- Google Cloud SQL

From –http://code.google.com/apis/sql/

What is Google Cloud SQL?

Google Cloud SQL is web service that allows you to create, configure, and use relational databases with your App Engine applications. It is a fully-managed service that maintains, manages, and administers your databases, allowing you to focus on your applications and services.

By offering the capabilities of a MySQL database, the service enables you to easily move your data, applications, and services into and out of the cloud. This allows for high data portability and helps in faster time-to-market because you can quickly leverage your existing database (using JDBC and/or DB-API) in your App Engine application.

Here is where you can get an invite to the beta only Google Cloud SQL

Sign up for Limited Preview

Google Cloud SQL is available to a limited number of users. To sign up for the service:

  1. Visit the Google APIs Console. The console opens the All services pane.
  2. Find the SQL Service line in the Services table and click Request access…
  3. Fill out the enrollment form.
  4. Our team will review your enrollment information and respond by email to the address associated with your Google Account.
  5. Follow the link in the email to view the Terms of Service. Please read these carefully before accepting.
  6. Sign up for the google-cloud-sql-announce group to receive important announcements and product news. (NOTE- Members: 384)
and after all that violence and double talk, a walk in the clouds with SQL.
1. There are three kinds of instances in the beta view
2. Wait for the Instance to be created note- the Design of the Interface uptil now is much better than Amazon’s.  
Note you need to have an appspot application from Google Apps and can choose between the Python and Java versions. Quite clearly there is a play for other languages too. I think GO is also supported.
3. You can import your data from your Google Storage bucket
4. I am not that hot at coding or maybe the interface was too pretty. Anyways- the log tells me that import of the text file has failed from Google Storage to Google Cloud SQL 
5. Incidentally the Google Cloud Storage interface is also much better than the Amazon GUI for transferring data- Note I was using the classical statistical dataset Boston Housing Data as the test case. 
6. The SQL prompt is the weakest part of the design process of the Interphase. There is no Query builder and the SELECT FROM WHERE prompt is slightly amusing/ insulting . I mean guys either throw in a fully fledged GUI for query builder similar to the MYSQL Workbench , than create a pretty white command prompt.
7. You can also export your data back to your Google Storage bucket 
These are early days, and I am trying to see if there is a play for some cloud kind of ODBC action between R, Prediction API , and the cloud SQL… so try it out yourself at http://code.google.com/apis/sql/ and see if there is any juice you can build  here.
%d bloggers like this: