So the cover art is ready, and if you are a reviewer, you can reserve online copies of the book I have been writing for past 2 years. Special thanks to my mentors, detractors, readers and students- I owe you a beer!
You can also go here-
http://www.springer.com/statistics/book/978-1-4614-4342-1
R for Business Analytics
Ohri, Ajay
2012, 2012, XVI, 300 p. 208 illus., 162 in color.
ISBN 978-1-4614-4342-1
Due: September 30, 2012
(net)
- Covers full spectrum of R packages related to business analytics
- Step-by-step instruction on the use of R packages, in addition to exercises, references, interviews and useful links
- Background information and exercises are all applied to practical business analysis topics, such as code examples on web and social media analytics, data mining, clustering and regression models
R for Business Analytics looks at some of the most common tasks performed by business analysts and helps the user navigate the wealth of information in R and its 4000 packages. With this information the reader can select the packages that can help process the analytical tasks with minimum effort and maximum usefulness. The use of Graphical User Interfaces (GUI) is emphasized in this book to further cut down and bend the famous learning curve in learning R. This book is aimed to help you kick-start with analytics including chapters on data visualization, code examples on web analytics and social media analytics, clustering, regression models, text mining, data mining models and forecasting. The book tries to expose the reader to a breadth of business analytics topics without burying the user in needless depth. The included references and links allow the reader to pursue business analytics topics.
This book is aimed at business analysts with basic programming skills for using R for Business Analytics. Note the scope of the book is neither statistical theory nor graduate level research for statistics, but rather it is for business analytics practitioners. Business analytics (BA) refers to the field of exploration and investigation of data generated by businesses. Business Intelligence (BI) is the seamless dissemination of information through the organization, which primarily involves business metrics both past and current for the use of decision support in businesses. Data Mining (DM) is the process of discovering new patterns from large data using algorithms and statistical methods. To differentiate between the three, BI is mostly current reports, BA is models to predict and strategize and DM matches patterns in big data. The R statistical software is the fastest growing analytics platform in the world, and is established in both academia and corporations for robustness, reliability and accuracy.
Content Level » Professional/practitioner
Keywords » Business Analytics – Data Mining – Data Visualization – Forecasting – GUI – Graphical User Interface – R software – Text Mining
Related subjects » Business, Economics & Finance – Computational Statistics – Statistics
Really Looking forward to the book, Sir !