Predictive analytics in the cloud : Angoss

I interviewed Angoss in depth here at http://www.decisionstats.com/interview-eberhard-miethke-and-dr-mamdouh-refaat-angoss-software/

Well they just announced a predictive analytics in the cloud.

 

http://www.angoss.com/predictive-analytics-solutions/cloud-solutions/

Solutions

Overview

KnowledgeCLOUD™ solutions deliver predictive analytics in the Cloud to help businesses gain competitive advantage in the areas of sales, marketing and risk management by unlocking the predictive power of their customer data.

KnowledgeCLOUD clients experience rapid time to value and reduced IT investment, and enjoy the benefits of Angoss’ industry leading predictive analytics – without the need for highly specialized human capital and technology.

KnowledgeCLOUD solutions serve clients in the asset management, insurance, banking, high tech, healthcare and retail industries. Industry solutions consist of a choice of analytical modules:

KnowledgeCLOUD for Sales/Marketing

KnowledgeCLOUD solutions are delivered via KnowledgeHUB™, a secure, scalable cloud-based analytical platform together with supporting deployment processes and professional services that deliver predictive analytics to clients in a hosted environment. Angoss industry leading predictive analytics technology is employed for the development of models and deployment of solutions.

Angoss’ deep analytics and domain expertise guarantees effectiveness – all solutions are back-tested for accuracy against historical data prior to deployment. Best practices are shared throughout the service to optimize your processes and success. Finely tuned client engagement and professional services ensure effective change management and program adoption throughout your organization.

For businesses looking to gain a competitive edge and put their data to work, Angoss is the ideal partner.

—-

Hmm. Analytics in the cloud . Reduce hardware costs. Reduce software costs . Increase profitability margins.

Hmmmmm

My favorite professor in North Carolina who calls cloud as a time sharing, are you listening Professor?

Ads Alliance on Internet

Just saw

the Digital Advertising Alliance’s (DAA) Self-Regulatory Program for Online Behavioral Advertising.

Multi-Site Data Collection Principles Broaden Self Regulation Beyond Online Behavioral Advertising
WASHINGTON, D.C., NOVEMBER 7, 2011

The new Principles consist of the following specific requirements:

  1. Transparency and consumer control for purposes other than OBA – The Multi-Site Data Principles call for organizations that collect Multi-Site Data for purposes other than OBA to provide transparency and control regarding Internet surfing across unrelated Websites.
  2. Collection / use of data for eligibility determination – The Multi-Site Data Principles prohibit the collection, use or transfer of Internet surfing data across Websites for determination of a consumer’s eligibility for employment, credit standing, healthcare treatment and insurance.
  3. Collection / use of children’s data – The Multi-Site Data Principles state that organizations must comply with the Children’s Online Privacy Protection Act (COPPA).
  4. Meaningful accountability – The Multi-Site Data Principles are subject to enforcement through strong accountability mechanisms.

http://www.aboutads.info/principles

The DAA Self-Regulatory Principles

 

The cross-industry Self-Regulatory Principles for Multi-Site Data augment the Self-Regulatory   Principles for Online Behavioral Advertising  (OBA)  by covering the prospective  collection of Web site   data beyond that collected for OBA purposes.  The existing OBA  Principles and definitions  remain in   full force and effect and are not limited by the new  principles.

The cross-industry Self-Regulatory Principles for Online Behavioral Advertising was developed by   leading industry associations to apply  consumer-friendly standards to online  behavioral advertising  across the Internet. Online behavioral advertising increasingly supports the convenient access to  content, services, and applications over the Internet that consumers have come to expect at no cost   to them.

The Education Principle calls for organizations to participate in efforts to educate individuals and businesses about online behavioral advertising and the Principles.

The Transparency Principle calls for clearer and easily accessible disclosures to consumers about data collection and use practices associated with online behavioral advertising. It will result in new, enhanced notice on the page where data is collected through links embedded in or around advertisements, or on the Web page itself.

The Consumer Control Principle provides consumers with an expanded ability to choose whether data is collected and used for online behavioral advertising purposes. This choice will be available through a link from the notice provided on the Web page where data is collected.

The Consumer Control Principle requires “service providers”, a term that includes Internet access service providers and providers of desktop applications software such as Web browser “tool bars” to obtain the consent of users before engaging in online behavioral advertising, and take steps to de-identify the data used for such purposes.

The Data Security Principle calls for organizations to provide appropriate security for, and limited retention of data, collected and used for online behavioral advertising purposes.

The Material Changes Principle calls for obtaining consumer consent before a Material Change is made to an entity’s Online Behavioral Advertising data collection and use policies unless that change will result in less collection or use of data.

The Sensitive Data Principle recognizes that data collected from children and used for online behavioral advertising merits heightened protection, and requires parental consent for behavioral advertising to consumers known to be under 13 on child-directed Web sites. This Principle also provides heightened protections to certain health and financial data when attributable to a specific individual.

The Accountability Principle calls for development of programs to further advance these Principles, including programs to monitor and report instances of uncorrected non-compliance with these Principles to appropriate government agencies. The CBBB and DMA have been asked and agreed to work cooperatively to establish accountability mechanisms under the Principles.

 

Ajay- So why the self regulations?

Answer- Shoddy Maths in behaviorally targeted ads is leading to a very high glut in targeted ads, more than can be reasonably expected to click based on consumer spending. On the internet- unlike on television- cost is less of a barrrier to OVER ADVERTISING.

 

Denial of Service Attacks against Hospitals and Emergency Rooms

One of the most frightening possibilities of cyber warfare is to use remotely deployed , or timed intrusion malware to disturb, distort, deny health care services.

Computer Virus Shuts Down Georgia Hospital

A doctor in an Emergency Room depends on critical information that may save lives if it is electronic and comes on time. However this electronic information can be distorted (which is more severe than deleting it)

The electronic system of a Hospital can also be overwhelmed. If there can be built Stuxnet worms on   nuclear centrifuge systems (like those by Siemens), then the widespread availability of health care systems means these can be reverse engineered for particularly vicious cyber worms.

An example of prime area for targeting is Veterans Administration for veterans of armed forces, but also cyber attacks against electronic health records.

Consider the following data points-

http://threatpost.com/en_us/blogs/dhs-warns-about-threat-mobile-devices-healthcare-051612

May 16, 2012, 9:03AM

DHS’s National Cybersecurity and Communications Integration Center (NCCIC) issued the unclassfied bulletin, “Attack Surface: Healthcare and Public Health Sector” on May 4. In it, DHS warns of a wide range of security risks, including that could expose patient data to malicious attackers, or make hospital networks and first responders subject to disruptive cyber attack

http://publicintelligence.net/nccic-medical-device-cyberattacks/

National Cybersecurity and Communications Integration Center Bulletin

The Healthcare and Public Health (HPH) sector is a multi-trillion dollar industry employing over 13 million personnel, including approximately five million first-responders with at least some emergency medical training, three million registered nurses, and more than 800,000 physicians.

(U) A significant portion of products used in patient care and management including diagnosis and treatment are Medical Devices (MD). These MDs are designed to monitor changes to a patient’s health and may be implanted or external. The Food and Drug Administration (FDA) regulates devices from design to sale and some aspects of the relationship between manufacturers and the MDs after sale. However, the FDA cannot regulate MD use or users, which includes how they are linked to or configured within networks. Typically, modern MDs are not designed to be accessed remotely; instead they are intended to be networked at their point of use. However, the flexibility and scalability of wireless networking makes wireless access a convenient option for organizations deploying MDs within their facilities. This robust sector has led the way with medical based technology options for both patient care and data handling.

(U) The expanded use of wireless technology on the enterprise network of medical facilities and the wireless utilization of MDs opens up both new opportunities and new vulnerabilities to patients and medical facilities. Since wireless MDs are now connected to Medical information technology (IT) networks, IT networks are now remotely accessible through the MD. This may be a desirable development, but the communications security of MDs to protect against theft of medical information and malicious intrusion is now becoming a major concern. In addition, many HPH organizations are leveraging mobile technologies to enhance operations. The storage capacity, fast computing speeds, ease of use, and portability render mobile devices an optimal solution.

(U) This Bulletin highlights how the portability and remote connectivity of MDs introduce additional risk into Medical IT networks and failure to implement a robust security program will impact the organization’s ability to protect patients and their medical information from intentional and unintentional loss or damage.

(U) According to Health and Human Services (HHS), a major concern to the Healthcare and Public Health (HPH) Sector is exploitation of potential vulnerabilities of medical devices on Medical IT networks (public, private and domestic). These vulnerabilities may result in possible risks to patient safety and theft or loss of medical information due to the inadequate incorporation of IT products, patient management products and medical devices onto Medical IT Networks. Misconfigured networks or poor security practices may increase the risk of compromised medical devices. HHS states there are four factors which further complicate security resilience within a medical organization.

1. (U) There are legacy medical devices deployed prior to enactment of the Medical Device Law in 1976, that are still in use today.

2. (U) Many newer devices have undergone rigorous FDA testing procedures and come equipped with design features which facilitate their safe incorporation onto Medical IT networks. However, these secure design features may not be implemented during the deployment phase due to complexity of the technology or the lack of knowledge about the capabilities. Because the technology is so new, there may not be an authoritative understanding of how to properly secure it, leaving open the possibilities for exploitation through zero-day vulnerabilities or insecure deployment configurations. In addition, new or robust features, such as custom applications, may also mean an increased amount of third party code development which may create vulnerabilities, if not evaluated properly. Prior to enactment of the law, the FDA required minimal testing before placing on the market. It is challenging to localize and mitigate threats within this group of legacy equipment.

3. (U) In an era of budgetary restraints, healthcare facilities frequently prioritize more traditional programs and operational considerations over network security.

4. (U) Because these medical devices may contain sensitive or privacy information, system owners may be reluctant to allow manufactures access for upgrades or updates. Failure to install updates lays a foundation for increasingly ineffective threat mitigation as time passes.

(U) Implantable Medical Devices (IMD): Some medical computing devices are designed to be implanted within the body to collect, store, analyze and then act on large amounts of information. These IMDs have incorporated network communications capabilities to increase their usefulness. Legacy implanted medical devices still in use today were manufactured when security was not yet a priority. Some of these devices have older proprietary operating systems that are not vulnerable to common malware and so are not supported by newer antivirus software. However, many are vulnerable to cyber attacks by a malicious actor who can take advantage of routine software update capabilities to gain access and, thereafter, manipulate the implant.

(U) During an August 2011 Black Hat conference, a security researcher demonstrated how an outside actor can shut off or alter the settings of an insulin pump without the user’s knowledge. The demonstration was given to show the audience that the pump’s cyber vulnerabilities could lead to severe consequences. The researcher that provided the demonstration is a diabetic and personally aware of the implications of this activity. The researcher also found that a malicious actor can eavesdrop on a continuous glucose monitor’s (CGM) transmission by using an oscilloscope, but device settings could not be reprogrammed. The researcher acknowledged that he was not able to completely assume remote control or modify the programming of the CGM, but he was able to disrupt and jam the device.

http://www.healthreformwatch.com/category/electronic-medical-records/

February 7, 2012

Since the data breach notification regulations by HHS went into effect in September 2009, 385 incidents affecting 500 or more individuals have been reported to HHS, according to its website.

http://www.darkdaily.com/cyber-attacks-against-internet-enabled-medical-devices-are-new-threat-to-clinical-pathology-laboratories-215#axzz1yPzItOFc

February 16 2011

One high-profile healthcare system that regularly experiences such attacks is the Veterans Administration (VA). For two years, the VA has been fighting a cyber battle against illegal and unwanted intrusions into their medical devices

 

http://www.mobiledia.com/news/120863.html

 DEC 16, 2011
Malware in a Georgia hospital’s computer system forced it to turn away patients, highlighting the problems and vulnerabilities of computerized systems.

The computer infection started to cause problems at the Gwinnett Medical Center last Wednesday and continued to spread, until the hospital was forced to send all non-emergency admissions to other hospitals.

More doctors and nurses than ever are using mobile devices in healthcare, and hospitals are making patient records computerized for easier, convenient access over piles of paperwork.

http://www.doctorsofusc.com/uscdocs/locations/lac-usc-medical-center

As one of the busiest public hospitals in the western United States, LAC+USC Medical Center records nearly 39,000 inpatient discharges, 150,000 emergency department visits, and 1 million ambulatory care visits each year.

http://www.healthreformwatch.com/category/electronic-medical-records/

If one jumbo jet crashed in the US each day for a week, we’d expect the FAA to shut down the industry until the problem was figured out. But in our health care system, roughly 250 people die each day due to preventable error

http://www.pcworld.com/article/142926/are_healthcare_organizations_under_cyberattack.html

Feb 28, 2008

“There is definitely an uptick in attacks,” says Dr. John Halamka, CIO at both Beth Israel Deaconess Medical Center and Harvard Medical School in the Boston area. “Privacy is the foundation of everything we do. We don’t want to be the TJX of healthcare.” TJX is the Framingham, Mass-based retailer which last year disclosed a massive data breach involving customer records.

Dr. Halamka, who this week announced a project in electronic health records as an online service to the 300 doctors in the Beth Israel Deaconess Physicians Organization,

Analytics 2011 Conference

From http://www.sas.com/events/analytics/us/

The Analytics 2011 Conference Series combines the power of SAS’s M2010 Data Mining Conference and F2010 Business Forecasting Conference into one conference covering the latest trends and techniques in the field of analytics. Analytics 2011 Conference Series brings the brightest minds in the field of analytics together with hundreds of analytics practitioners. Join us as these leading conferences change names and locations. At Analytics 2011, you’ll learn through a series of case studies, technical presentations and hands-on training. If you are in the field of analytics, this is one conference you can’t afford to miss.

Conference Details

October 24-25, 2011
Grande Lakes Resort
Orlando, FL

Analytics 2011 topic areas include:

Protected: Whats behind that pretty SAS Blog?

This content is password protected. To view it please enter your password below:

PAW Videos

A message from Predictive Analytics World on  newly available videos. It has many free videos as well so you can check them out.

Predictive Analytics World March 2011 in San Francisco

Access PAW DC Session Videos Now

Predictive Analytics World is pleased to announce on-demand access to the videos of PAW Washington DC, October 2010, including over 30 sessions and keynotes that you may view at your convenience. Access this leading predictive analytics content online now:

View the PAW DC session videos online

Register by January 18th and receive $150 off the full 2-day conference program videos (enter code PAW150 at checkout)

Trial videos – view the following for no charge:

Select individual conference sessions, or recognize savings by registering for access to one or two full days of sessions. These on-demand videos deliver PAW DC right to your desk, covering hot topics and advanced methods such as:

Social data 

Text mining

Search marketing

Risk management

Survey analysis

Consumer privacy

Sales force optimization

Response & cross-sell

Recommender systems

Featuring experts such as:
Usama Fayyad, Ph.D.
CEO, Open Insights Former Chief Data Officer, Yahoo!

Andrew Pole
Sr Mgr, Media/DB Mktng
Target
View Keynote for Free

John F. Elder, Ph.D.
CEO and Founder
Elder Research

Bruno Aziza
Director, Worldwide Strategy Lead, BI
Microsoft

Eric Siegel, Ph.D.
Conference Chair
Predictive Analytics World

PAW DC videos feature over 25 speakers with case studies from leading enterprises such as: CIBC, CEB, Forrester, Macy’s, MetLife, Microsoft, Miles Kimball, Monster.com, Oracle, Paychex, SunTrust, Target, UPMC, Xerox, Yahoo!, YMCA, and more.

How video access works:

View Slides on the Left See & Hear Speaker in the Right Window

Sign up by January 18 for immediate video access and $150 discount


San Francisco
March 14-15, 2011
Washington DC
October, 2011
London
November, 2011
Contact Us

Produced by:

 

Session Gallery: Day 1 of 2

Viewing (17) Sessions of (31)

 

keynote.jpg
Add to Cart
Keynote: Five Ways Predictive Analytics Cuts Enterprise Risk  

Eric Siegel, Ph.D., Program Chair, Predictive Analytics World

All business is an exercise in risk management. All organizations would benefit from measuring, tracking and computing risk as a core process, much like insurance companies do.

Predictive analytics does the trick, one customer at a time. This technology is a data-driven means to compute the risk each customer will defect, not respond to an expensive mailer, consume a retention discount even if she were not going to leave in the first place, not be targeted for a telephone solicitation that would have landed a sale, commit fraud, or become a “loss customer” such as a bad debtor or an insurance policy-holder with high claims.

In this keynote session, Dr. Eric Siegel reveals:

– Five ways predictive analytics evolves your enterprise to reduce risk

– Hidden sources of risk across operational functions

– What every business should learn from insurance companies

– How advancements have reversed the very meaning of fraud

– Why “man + machine” teams are greater than the sum of their parts for enterprise decision support

Length – 00:45:57 | Email to a Colleague

Price: $195

 

 

sponsor.jpg
Play video of session: Platinum Sponsor Presentation, Analytics: The Beauty of Diversity
Platinum Sponsor Presentation: Analytics – The Beauty of Diversity 

Anne H. Milley, Senior Director of Analytic Strategy, Worldwide Product Marketing, SAS

Analytics contributes to, and draws from, multiple disciplines. The unifying theme of “making the world a better place” is bred from diversity. For instance, the same methods used in econometrics might be used in market research, psychometrics and other disciplines. In a similar way, diverse paradigms are needed to best solve problems, reveal opportunities and make better decisions. This is why we evolve capabilities to formulate and solve a wide range of problems through multiple integrated languages and interfaces. Extending that, we have provided integration with other languages so that users can draw on the disciplines and paradigms needed to best practice their craft.

Length – 20:11 | Email to a Colleague

Free viewing enabled – no charge

 

gold sponsor.jpg
Play video of session: Gold Sponsor Presentation Predictive Analytics Accelerate Insight for Financial Services
Gold Sponsor Presentation: Predictive Analytics Accelerate Insight for Financial Services 

Finbarr Deely, Director of Business Development,ParAccel

Financial services organizations face immense hurdles in maintaining profitability and building competitive advantage. Financial services organizations must perform “what-if” scenario analysis, identify risks, and detect fraud patterns. The advanced analytic complexity required often makes such analysis slow and painful, if not impossible. This presentation outlines the analytic challenges facing these organizations and provides a clear path to providing the accelerated insight needed to perform in today’s complex business environment to reduce risk, stop fraud and increase profits. * The value of predictive analytics in Accelerating Insight * Financial Services Analytic Case Studies * Brief Overview of ParAccel Analytic Database

Length – 09:06 | Email to a Colleague

Free viewing enabled – no charge

 

isson1.jpg
Add to Cart
TOPIC: BUSINESS VALUE
Case Study: Monster.com
Creating Global Competitive Power with Predictive Analytics 

Jean Paul Isson, Vice President, Globab BI & Predictive Analytics, Monster Worldwide

Using Predictive analytics to gain a deeper understanding of customer behaviours, increase marketing ROI and drive growth

– Creating global competitive power with business intelligence: Making the right decisions – at the right time

– Avoiding common change management challenges in sales, marketing, customer service, and products

– Developing a BI vision – and implementing it: successful business intelligence implementation models

– Using predictive analytics as a business driver to stay on top of the competition

– Following the Monster Worldwide global BI evolution: How Monster used BI to go from good to great

Length – 51:17 | Email to a Colleague

Price: $195

 

 

abbot.jpg
Add to Cart
TOPIC: SURVEY ANALYSIS
Case Study: YMCA
Turning Member Satisfaction Surveys into an Actionable Narrative 

Dean Abbott, President, Abbott Analytics

Employees are a key constituency at the Y and previous analysis has shown that their attitudes have a direct bearing on Member Satisfaction. This session will describe a successful approach for the analysis of YMCA employee surveys. Decision trees are built and examined in depth to identify key questions in describing key employee satisfaction metrics, including several interesting groupings of employee attitudes. Our approach will be contrasted with other factor analysis and regression-based approaches to survey analysis that we used initially. The predictive models described are currently in use and resulted in both greater understanding of employee attitudes, and a revised “short-form” survey with fewer key questions identified by the decision trees as the most important predictors.

Length – 50:19 | Email to a Colleague

Price: $195

 

 

rexer.jpg
Add to Cart
TOPIC: INDUSTRY TRENDS
2010 Data Minter Survey Results: Highlights
 

Karl Rexer, Ph.D., Rexer Analytics

Do you want to know the views, actions, and opinions of the data mining community? Each year, Rexer Analytics conducts a global survey of data miners to find out. This year at PAW we unveil the results of our 4th Annual Data Miner Survey. This session will present the research highlights, such as:

– Analytic goals & key challenges

– Impact of the economy

– Regional differences

– Text mining trends

Length – 15:20 | Email to a Colleague

Price: $195

 

 

elder.jpg
Add to Cart
Multiple Case Studies: U.S. DoD, U.S. DHS, SSA
Text Mining: Lessons Learned 

John F. Elder, Chief Scientist, Elder Research, Inc.

Text Mining is the “Wild West” of data mining and predictive analytics – the potential for gain is huge, the capability claims are often tall tales, and the “land rush” for leadership is very much a race.

In solving unstructured (text) analysis challenges, we found that principles from inductive modeling – learning relationships from labeled cases – has great power to enhance text mining. Dr. Elder highlights key technical breakthroughs discovered while working on projects for leading government agencies, including: Text Mining is the “Wild West” of data mining and predictive analytics – the potential for gain is huge, the capability claims are often tall tales, and the “land rush” for leadership is very much a race.

– Prioritizing searches for the Dept. of Homeland Security

– Quick decisions for Social Security Admin. disability

– Document discovery for the Dept. of Defense

– Disease discovery for the Dept. of Homeland Security

– Risk profiling for the Dept. of Defense

Length – 48:58 | Email to a Colleague

Price: $195

 

 

target.jpg
Play video of session: Keynote: How Target Gets the Most out of Its Guest Data to Improve Marketing ROI
Keynote: How Target Gets the Most out of Its Guest Data to Improve Marketing ROI 

Andrew Pole, Senior Manager, Media and Database Marketing, Target

In this session, you’ll learn how Target leverages its own internal guest data to optimize its direct marketing – with the ultimate goal of enhancing our guests’ shopping experience and driving in-store and online performance. You will hear about what guest data is available at Target, how and where we collect it, and how it is used to improve the performance and relevance of direct marketing vehicles. Furthermore, we will discuss Target’s development and usage of guest segmentation, response modeling, and optimization as means to suppress poor performers from mailings, determine relevant product categories and services for online targeted content, and optimally assign receipt marketing offers to our guests when offer quantities are limited.

Length – 47:49 | Email to a Colleague

Free viewing enabled – no charge

 

analytics.jpg
Play video of session: Platinum Sponsor Presentation: Driving Analytics Into Decision Making
Platinum Sponsor Presentation: Driving Analytics Into Decision Making  

Jason Verlen, Director, SPSS Product Strategy & Management, IBM Software Group

Organizations looking to dramatically improve their business outcomes are turning to decision management, a convergence of technology and business processes that is used to streamline and predict the outcome of daily decision-making. IBM SPSS Decision Management technology provides the critical link between analytical insight and recommended actions. In this session you’ll learn how Decision Management software integrates analytics with business rules and business applications for front-line systems such as call center applications, insurance claim processing, and websites. See how you can improve every customer interaction, minimize operational risk, reduce fraud and optimize results.

Length – 17:29 | Email to a Colleague

Free viewing enabled – no charge

 

macy.jpg
Add to Cart
TOPIC: DATA INFRASTRUCTURE AND INTEGRATION
Case Study: Macy’s
The world is not flat (even though modeling software has to think it is) 

Paul Coleman, Director of Marketing Statistics, Macy’s Inc.

Software for statistical modeling generally use flat files, where each record represents a unique case with all its variables. In contrast most large databases are relational, where data are distributed among various normalized tables for efficient storage. Variable creation and model scoring engines are necessary to bridge data mining and storage needs. Development datasets taken from a sampled history require snapshot management. Scoring datasets are taken from the present timeframe and the entire available universe. Organizations, with significant data, must decide when to store or calculate necessary data and understand the consequences for their modeling program.

Length – 34:54 | Email to a Colleague

Price: $195

 

 

gwaltney.jpg
Add to Cart
TOPIC: CUSTOMER VALUE
Case Study: SunTrust
When One Model Will Not Solve the Problem – Using Multiple Models to Create One Solution 

Dudley Gwaltney, Group Vice President, Analytical Modeling, SunTrust Bank

In 2007, SunTrust Bank developed a series of models to identify clients likely to have large changes in deposit balances. The models include three basic binary and two linear regression models.

Based on the models, 15% of SunTrust clients were targeted as those most likely to have large balance changes. These clients accounted for 65% of the absolute balance change and 60% of the large balance change clients. The targeted clients are grouped into a portfolio and assigned to individual SunTrust Retail Branch. Since 2008, the portfolio generated a 2.6% increase in balances over control.

Using the SunTrust example, this presentation will focus on:

– Identifying situations requiring multiple models

– Determining what types of models are needed

– Combining the individual component models into one output

Length – 48:22 | Email to a Colleague

Price: $195

 

 

paychex1.jpg
Add to Cart
TOPIC: RESPONSE & CROSS-SELL
Case Study: Paychex
Staying One Step Ahead of the Competition – Development of a Predictive 401(k) Marketing and Sales Campaign 

Jason Fox, Information Systems and Portfolio Manager,Paychex

In-depth case study of Paychex, Inc. utilizing predictive modeling to turn the tides on competitive pressures within their own client base. Paychex, a leading provider of payroll and human resource solutions, will guide you through the development of a Predictive 401(k) Marketing and Sales model. Through the use of sophisticated data mining techniques and regression analysis the model derives the probability a client will add retirement services products with Paychex or with a competitor. Session will include roadblocks that could have ended development and ROI analysis. Speaker: Frank Fiorille, Director of Enterprise Risk Management, Paychex Speaker: Jason Fox, Risk Management Analyst, Paychex

Length – 26:29 | Email to a Colleague

Price: $195

 

 

ling.jpg
Add to Cart
TOPIC: SEGMENTATION
Practitioner: Canadian Imperial Bank of Commerce
Segmentation Do’s and Don’ts 

Daymond Ling, Senior Director, Modelling & Analytics,Canadian Imperial Bank of Commerce

The concept of Segmentation is well accepted in business and has withstood the test of time. Even with the advent of new artificial intelligence and machine learning methods, this old war horse still has its place and is alive and well. Like all analytical methods, when used correctly it can lead to enhanced market positioning and competitive advantage, while improper application can have severe negative consequences.

This session will explore what are the elements of success, and what are the worse practices that lead to failure. The relationship between segmentation and predictive modeling will also be discussed to clarify when it is appropriate to use one versus the other, and how to use them together synergistically.

Length – 45:57 | Email to a Colleague

Price: $195

 

 

kobelius1.jpg
Add to Cart
TOPIC: SOCIAL DATA
Thought Leadership
Social Network Analysis: Killer Application for Cloud Analytics
 

James Kobielus, Senior Analyst, Forrester Research

Social networks such as Twitter and Facebook are a potential goldmine of insights on what is truly going through customers´minds. Every company wants to know whether, how, how often, and by whom they´re being mentioned across the billowing new cloud of social media. Just as important, every company wants to influence those discussions in their favor, target new business, and harvest maximum revenue potential. In this session, Forrester analyst James Kobielus identifies fruitful applications of social network analysis in customer service, sales, marketing, and brand management. He presents a roadmap for enterprises to leverage their inline analytics initiatives and leverage high-performance data warehousing (DW) clouds and appliances in order to analyze shifting patterns of customer sentiment, influence, and propensity. Leveraging Forrester’s ongoing research in advanced analytics and customer relationship management, Kobielus will discuss industry trends, commercial modeling tools, and emerging best practices in social network analysis, which represents a game-changing new discipline in predictive analytics.

Length – 48:16 | Email to a Colleague

Price: $195

 

 

dogan.jpg
Add to Cart
TOPIC: HEALTHCARE – INTERNATIONAL TARGETING
Case Study: Life Line Screening
Taking CRM Global Through Predictive Analytics 

Ozgur Dogan,
VP, Quantitative Solutions Group, Merkle Inc

Trish Mathe,
Director of Database Marketing, Life Line Screening

While Life Line is successfully executing a US CRM roadmap, they are also beginning this same evolution abroad. They are beginning in the UK where Merkle procured data and built a response model that is pulling responses over 30% higher than competitors. This presentation will give an overview of the US CRM roadmap, and then focus on the beginning of their strategy abroad, focusing on the data procurement they could not get anywhere else but through Merkle and the successful modeling and analytics for the UK. Speaker: Ozgur Dogan, VP, Quantitative Solutions Group, Merkle Inc Speaker: Trish Mathe, Director of Database Marketing, Life Line Screening

Length – 40:12 | Email to a Colleague

Price: $195

 

 

sambamoorthi1.jpg
Add to Cart
TOPIC: SURVEY ANALYSIS
Case Study: Forrester
Making Survey Insights Addressable and Scalable – The Case Study of Forrester’s Technographics Benchmark Survey 

Nethra Sambamoorthi, Team Leader, Consumer Dynamics & Analytics, Global Consulting, Acxiom Corporation

Marketers use surveys to create enterprise wide applicable strategic insights to: (1) develop segmentation schemes, (2) summarize consumer behaviors and attitudes for the whole US population, and (3) use multiple surveys to draw unified views about their target audience. However, these insights are not directly addressable and scalable to the whole consumer universe which is very important when applying the power of survey intelligence to the one to one consumer marketing problems marketers routinely face. Acxiom partnered with Forrester Research, creating addressable and scalable applications of Forrester’s Technographics Survey and applied it successfully to a number of industries and applications.

Length – 39:23 | Email to a Colleague

Price: $195

 

 

zasadil.jpg
Add to Cart
TOPIC: HEALTHCARE
Case Study: UPMC Health Plan
A Predictive Model for Hospital Readmissions 

Scott Zasadil, Senior Scientist, UPMC Health Plan

Hospital readmissions are a significant component of our nation’s healthcare costs. Predicting who is likely to be readmitted is a challenging problem. Using a set of 123,951 hospital discharges spanning nearly three years, we developed a model that predicts an individual’s 30-day readmission should they incur a hospital admission. The model uses an ensemble of boosted decision trees and prior medical claims and captures 64% of all 30-day readmits with a true positive rate of over 27%. Moreover, many of the ‘false’ positives are simply delayed true positives. 53% of the predicted 30-day readmissions are readmitted within 180 days.

Length – 54:18 | Email to a Colleague

Price: $195

JMP Genomics 5 released

Animation of the structure of a section of DNA...
Image via Wikipedia

Close to the launch of JMP9 with it’s R integration comes the announcement of JMP Genomics 5 released. The product brief is available here http://jmp.com/software/genomics/pdf/103112_jmpg5_prodbrief.pdf and it has an interesting mix of features. If you want to try out the features you can see http://jmp.com/software/license.shtml

As per me, I snagged some “new”stuff in this release-

  • Perform enrichment analysis using functional information from Ingenuity Pathways Analysis.+
  • New bar chart track allows summarization of reads or intensities.
  • New color map track displays heat plots of information for individual subjects.
  • Use a variety of continuous measures for summarization.
  • Using a common identifier, compare list membership for up tofive groups and display overlaps with Venn diagrams.
  • Filter or shade segments by mean intensity, with an optionto display segment mean intensity and set a reference valuefor shading.
  • Adjust intensities or counts for experimental samples using paired or grouped control samples.
  • Screen paired DNA and RNA intensities for allele-specific expression.
  • Standardize using a shifting factor and perform log2transformation after standardization.
  • Use kernel density information in loess and quantile normalization.
  • Depict partition tree information graphically for standard models with new Tree Viewer
  • Predictive modeling for survival analysis with Harrell’s assessment method and integration with Cross-Validation Model Comparison.

That’s right- that is incorporating the work of our favorite professor from R Project himself- http://biostat.mc.vanderbilt.edu/wiki/Main/FrankHarrell

Apparently Prof Frank E was quite a SAS coder himself (see http://biostat.mc.vanderbilt.edu/wiki/Main/SasMacros)

Back to JMP Genomics 5-

The JMP software platform provides:

• New integration capabilities let R users leverage JMP’s interactivegraphics to display analytic results.

• Tools for R programmers to build and package user interfaces that let them share customized R analytics with a broader audience.•

A new add-in infrastructure that simplifies the integration of external analytics into JMP.

 

+ For people in life sciences who like new stats software you can also download a trial version of IPA here at http://www.ingenuity.com/products/IPA/Free-Trial-Software.html

%d bloggers like this: