Awesome Case Study by PayPal/ Rapid Miner for Churn

I just saw this awesome case study of using Rapid Miner for predicting Churn in financial services (Paypal). I had been looking for simple yet exhaustive manuals/case studies on churn modeling and this is one the better ones I have seen. http://rapid-i.com/downloads/press/PayPalCaseStudyChurnRiskDetectionv1.1-web.pdf

 

Interview Jaime Fitzgerald President Fitzgerald Analytics

Here is an interview with noted analytics expert Jaime Fitzgerald, of Fitzgerald Analytics.

Ajay-Describe your career journey from being a Harvard economist to being a text analytics thought leader.

 Jaime- I was attracted to economics because of the logic, the structured and systematic approach to understanding the world and to solving problems. In retrospect, this is the same passion for logic in problem solving that drives my business today.

About 15 years ago, I began working in consulting and initially took a traditional career path. I worked for well-known strategy consulting firms including First Manhattan Consulting Group, Novantas LLC, Braun Consulting, and for the former Japan-focused division of Deloitte Consulting, which had spun off as an independent entity. I was the only person in their New York City office for whom Japanese was not the first language.

While I enjoyed traditional consulting, I was especially passionate about the role of data, analytics, and process improvement. In traditional strategy consulting, these are important factors, but I had a vision for a “next generation” approach to strategy consulting that would be more transparent, more robust, and more focused on the role that information, analysis, and process plays in improving business results. I often explain that while my firm is “not your father’s consulting model,” we have incorporated key best practices from traditional consulting, and combined them with an approach that is more data-centric, technology-centric, and process-centric.

At the most fundamental level, I was compelled to found Fitzgerald Analytics more than six years ago by my passion for the role information plays in improving results, and ultimately improving lives. In my vision, data is an asset waiting to be transformed into results, including profit as well as other results that matter deeply to people. For example,one of the most fulfilling aspects of our work at Fitzgerald Analytics is our support of non-profits and social entrepreneurs, who we help increase their scale and their success in achieving their goals.

Ajay- How would you describe analytics as a career option to future students. What do you think are the most essential qualities an analytics career requires.

Jaime- My belief is that analytics will be a major driver of job-growth and career growth for decades. We are just beginning to unlock the full potential of analytics, and already the demand for analytic talent far exceeds the supply.

To succeed in analytics, the most important quality is logic. Many people believe that math or statistical skills are the most important quality, but in my experience, the most essential trait is what I call “ThoughtStyle” — critical thinking, logic, an ability to break down a problem into components, into sub-parts.

Ajay -What are your favorite techniques and methodologies in text analytics. How do you see social media and Big Data analytics as components of text analytics

 Jaime-We do a lot of work for our clients measuring Customer Experience, by which I mean the experience customers have when interacting with our clients. For example, we helped a major brokerage firm to measure 12 key “Moments that Matter,” including the operational aspects of customer service, customer satisfaction and sentiment, and ultimately customer behavior. Clients care about this a lot, because customer experience drives customer loyalty, which in turn drives customer behavior, customer loyalty, and customer profitability.

Text analytics plays a key role in these projects because much of our data on customer sentiment comes via unstructured text data. For example, we have access to call center transcripts and notes, to survey responses, and to social media comments.

We use a variety of methods, some of which I’m not in a position to describe in great detail. But at a high level, I would say that our favorite text analytics methodologies are “hybrid solutions” which use a two-step process to answer key questions for clients:

Step 1: convert unstructured data into key categorical variables (for example, using contextual analysis to flag users who are critical vs. neutral vs. advocates)

Step 2: linking sentiment categories to customer behavior and profitability (for example, linking customer advocacy and loyalty with customer profits as well as referral volume, to define the ROI that clients accrue for customer satisfaction improvements)

Ajay- Describe your consulting company- Fitzgerald Analytics and some of the work that you have been engaged in.

 Jaime- Our mission is to “illuminate reality” using data and to convert Data to Dollars for our clients. We have a track record of doing this well, with concrete and measurable results in the millions of dollars. As a result, 100% of our clients have engaged us for more than one project: a 100% client loyalty rate.

Our specialties–and most frequent projects–include customer profitability management projects, customer segmentation, customer experience management, balanced scorecards, and predictive analytics. We are often engaged to address high-stakes analytic questions, including issues that help to set long-term strategy. In other cases, clients hire us to help them build their internal capabilities. We have helped build several brand new analytic teams for clients, which continue to generate millions of dollars of profits with their fact-based recommendations.

Our methodology is based on Steven Covey’s principle: “begin with the end in mind,” the concept of starting with the client’s goal and working backwards from there. I often explain that our methods are what you would have gotten if Steven Covey had been a data analyst…we are applying his principles to the world of data analytics.

Ajay- Analytics requires more and more data while privacy requires the least possible data. What do you think are the guidelines that need to be built in sharing internet browsing and user activity data and do we need regulations just like we do for sharing financial data.

 Jaime- Great question. This is an essential challenge of the big data era. My perspective is that firms who depend on user data for their analysis need to take responsibility for protecting privacy by using data management best practices. Best practices to adequately “mask” or remove private data exist…the problem is that these best practices are often not applied. For example, Facebook’s practice of sharing unique user IDs with third-party application companies has generated a lot of criticism, and could have been avoided by applying data management best practices which are well known among the data management community.

If I were able to influence public policy, my recommendation would be to adopt a core set of simple but powerful data management standards that would protect consumers from perhaps 95% of the privacy risks they face today. The number one standard would be to prohibit sharing of static, personally identifiable user IDs between companies in a manner that creates “privacy risk.” Companies can track unique customers without using a static ID…they need to step up and do that.

Ajay- What are your favorite text analytics software that you like to work with.

 Jaime- Because much of our work in deeply embedded into client operations and systems, we often use the software our clients already prefer. We avoid recommending specific vendors unless our client requests it. In tandem with our clients and alliance partners, we have particular respect for Autonomy, Open Text, Clarabridge, and Attensity.

Biography-

http://www.fitzgerald-analytics.com/jaime_fitzgerald.html

The Founder and President of Fitzgerald Analytics, Jaime has developed a distinctively quantitative, fact-based, and transparent approach to solving high stakes problems and improving results.  His approach enables translation of Data to Dollars™ using methodologies clients can repeat again and again.  He is equally passionate about the “human side of the equation,” and is known for his ability to link the human and the quantitative, both of which are needed to achieve optimal results.

Experience: During more than 15 years serving clients as a management strategy consultant, Jaime has focused on customer experience and loyalty, customer profitability, technology strategy, information management, and business process improvement.  Jaime has advised market-leading banks, retailers, manufacturers, media companies, and non-profit organizations in the United States, Canada, and Singapore, combining strategic analysis with hands-on implementation of technology and operations enhancements.

Career History: Jaime began his career at First Manhattan Consulting Group, specialists in financial services, and was later a Co-Founder at Novantas, the strategy consultancy based in New York City.  Jaime was also a Manager for Braun Consulting, now part of Fair Isaac Corporation, and for Japan-based Abeam Consulting, now part of NEC.

Background: Jaime is a graduate of Harvard University with a B.A. in Economics.  He is passionate and supportive of innovative non-profit organizations, their effectiveness, and the benefits they bring to our society.

Upcoming Speaking Engagements:   Jaime is a frequent speaker on analytics, information management strategy, and data-driven profit improvement.  He recently gave keynote presentations on Analytics in Financial Services for The Data Warehousing Institute, the New York Technology Council, and the Oracle Financial Services Industry User Group. A list of Jaime’s most interesting presentations on analyticscan be found here.

He will be presenting a client case study this fall at Text Analytics World re:   “New Insights from ‘Big Legacy Data’: The Role of Text Analytics” 

Connecting with Jaime:  Jaime can be found at Linkedin,  and Twitter.  He edits the Fitzgerald Analytics Blog.

Predictive Analytics World

Here is an announcement from Predictive Analytics World, the worlds largest vendor neutral conference dedicated to Predictive Analytics alone. Decisionstats has been a blog partner of PAWCON since inception. This is cool stuff!Predictive Analytics World New York October 2011

Video Testimonials: Reasons to Attend Predictive Analytics World Oct 2011, NY  

What’s Predictive Analytics World (PAW) all about and why should you go? See and hear experiences from those who have attended PAW. The video recorded at PAW San Francisco 2011 includes statements from Thomas Davenport, conference chair Eric Siegel, and other conference participants and VIPs.

 

Join your peers October 17-21, 2011 at the Hilton New York for Predictive Analytics World, the business event for predictive analytics professionals, managers and commercial practitioners, covering today’s commercial deployment of predictive analytics, across industries and across software vendors.

Register using the code REDC before June 15th and 10% of your registration proceeds will be donated to American Red Cross Midwest Tornado Relief Effort. Also, take advantage of Super Early Bird Pricing and realize $400 in savings.

Discover new content covering all the latest topics and advanced methods by participating in PAW’s workshops, case studies, and educational sessions.   View full agenda and topics online now.

PAW NYC agenda highlights include:

  • Keynotes from Tom Davenport, President’s Distinguished Professor, Babson College, Author, Competing on Analytics and Eric Siegel,  Conference Program Chair, Predictive Analytics World
  • Special plenary sessions from industry heavyweights, Usama Fayyad, Ph.D., CEO, Open Insights and John F. Elder, CEO and Founder, Elder Research
  • Full day workshops that cover the topics of Decisioning, Core Methods, Net Lift Modeling, Hands-On Intro, Hands-On R, Intro to Predictive Analytics and Intro to Business Analytics
  • Topics covering black box trading, churn modeling, crowdsourcing, demand forecasting, ensemble models, fraud detection, healthcare, insurance applications, law enforcement, litigation, market mix modeling, mobile analytics, online marketing, risk management, social data, supply chain management, targeting direct marketing, uplift modeling (net lift), and other innovative applications that benefit organizations in new and creative ways.
Thomas Davenport
Thomas Davenport
Author, Competing on Analytics
Eric Siegel, Ph.D
VIP from IBM Research (TBA)
Keynote on Jeopardy-Winning Watson and DeepQA
Eric Siegel, Ph.D
Eric Siegel, Ph.D
Program Chair, Predictive Analytics World
Usama Fayyad, Ph.D
Usama Fayyad, Ph.D
CEO, Open Insights
John F. Elder IV, Ph.D
John F. Elder IV, Ph.D
Chief Scientist, Elder Research, Inc.

Become an invaluable resource to your organization by discovering new processes and tactics that your peers are using to optimize with the best methods that leverage data – bringing their business results to the next level.

New Financial Services Track — You Asked and We Delivered

October’s event will include a new conference track of sessions dedicated to the Financial Services industry. This track will feature something for users of all levels, whether you’re deploying your first initiative or learning new ways to position analytics within your organization.


Text analytics. The new conference Text Analytics World,
co-located with PAW NYC, complements PAW’s agenda
with reasonable cross-registration options.

Take advantage of Super Early Bird Pricing and realize
$400 in savings before June 15, 2011.

Note:  Each additional attendee from the same company registered at the same time receives an extra $200 off the Conference Pass.

Register Now!


eMetrics New York

Follow Us on Twitter Be a Fan on Facebook LinkedIn Group Live Twitter Feed
Follow Like Join Live

Register Now!



All Analytics Conferences: 

Predictive Analytics World for Government – Sept 12-13 in DC
Predictive Analytics World NYC – Oct 17-21
Text Analytics World NYC – Oct 19-20
Predictive Analytics World San Francisco – March 2012
Predictive Analytics World Videos – Available on-demand

Produced by: 

Predictionimpact
RisingMedia

 

PAW Videos

A message from Predictive Analytics World on  newly available videos. It has many free videos as well so you can check them out.

Predictive Analytics World March 2011 in San Francisco

Access PAW DC Session Videos Now

Predictive Analytics World is pleased to announce on-demand access to the videos of PAW Washington DC, October 2010, including over 30 sessions and keynotes that you may view at your convenience. Access this leading predictive analytics content online now:

View the PAW DC session videos online

Register by January 18th and receive $150 off the full 2-day conference program videos (enter code PAW150 at checkout)

Trial videos – view the following for no charge:

Select individual conference sessions, or recognize savings by registering for access to one or two full days of sessions. These on-demand videos deliver PAW DC right to your desk, covering hot topics and advanced methods such as:

Social data 

Text mining

Search marketing

Risk management

Survey analysis

Consumer privacy

Sales force optimization

Response & cross-sell

Recommender systems

Featuring experts such as:
Usama Fayyad, Ph.D.
CEO, Open Insights Former Chief Data Officer, Yahoo!

Andrew Pole
Sr Mgr, Media/DB Mktng
Target
View Keynote for Free

John F. Elder, Ph.D.
CEO and Founder
Elder Research

Bruno Aziza
Director, Worldwide Strategy Lead, BI
Microsoft

Eric Siegel, Ph.D.
Conference Chair
Predictive Analytics World

PAW DC videos feature over 25 speakers with case studies from leading enterprises such as: CIBC, CEB, Forrester, Macy’s, MetLife, Microsoft, Miles Kimball, Monster.com, Oracle, Paychex, SunTrust, Target, UPMC, Xerox, Yahoo!, YMCA, and more.

How video access works:

View Slides on the Left See & Hear Speaker in the Right Window

Sign up by January 18 for immediate video access and $150 discount


San Francisco
March 14-15, 2011
Washington DC
October, 2011
London
November, 2011
Contact Us

Produced by:

 

Session Gallery: Day 1 of 2

Viewing (17) Sessions of (31)

 

keynote.jpg
Add to Cart
Keynote: Five Ways Predictive Analytics Cuts Enterprise Risk  

Eric Siegel, Ph.D., Program Chair, Predictive Analytics World

All business is an exercise in risk management. All organizations would benefit from measuring, tracking and computing risk as a core process, much like insurance companies do.

Predictive analytics does the trick, one customer at a time. This technology is a data-driven means to compute the risk each customer will defect, not respond to an expensive mailer, consume a retention discount even if she were not going to leave in the first place, not be targeted for a telephone solicitation that would have landed a sale, commit fraud, or become a “loss customer” such as a bad debtor or an insurance policy-holder with high claims.

In this keynote session, Dr. Eric Siegel reveals:

– Five ways predictive analytics evolves your enterprise to reduce risk

– Hidden sources of risk across operational functions

– What every business should learn from insurance companies

– How advancements have reversed the very meaning of fraud

– Why “man + machine” teams are greater than the sum of their parts for enterprise decision support

Length – 00:45:57 | Email to a Colleague

Price: $195

 

 

sponsor.jpg
Play video of session: Platinum Sponsor Presentation, Analytics: The Beauty of Diversity
Platinum Sponsor Presentation: Analytics – The Beauty of Diversity 

Anne H. Milley, Senior Director of Analytic Strategy, Worldwide Product Marketing, SAS

Analytics contributes to, and draws from, multiple disciplines. The unifying theme of “making the world a better place” is bred from diversity. For instance, the same methods used in econometrics might be used in market research, psychometrics and other disciplines. In a similar way, diverse paradigms are needed to best solve problems, reveal opportunities and make better decisions. This is why we evolve capabilities to formulate and solve a wide range of problems through multiple integrated languages and interfaces. Extending that, we have provided integration with other languages so that users can draw on the disciplines and paradigms needed to best practice their craft.

Length – 20:11 | Email to a Colleague

Free viewing enabled – no charge

 

gold sponsor.jpg
Play video of session: Gold Sponsor Presentation Predictive Analytics Accelerate Insight for Financial Services
Gold Sponsor Presentation: Predictive Analytics Accelerate Insight for Financial Services 

Finbarr Deely, Director of Business Development,ParAccel

Financial services organizations face immense hurdles in maintaining profitability and building competitive advantage. Financial services organizations must perform “what-if” scenario analysis, identify risks, and detect fraud patterns. The advanced analytic complexity required often makes such analysis slow and painful, if not impossible. This presentation outlines the analytic challenges facing these organizations and provides a clear path to providing the accelerated insight needed to perform in today’s complex business environment to reduce risk, stop fraud and increase profits. * The value of predictive analytics in Accelerating Insight * Financial Services Analytic Case Studies * Brief Overview of ParAccel Analytic Database

Length – 09:06 | Email to a Colleague

Free viewing enabled – no charge

 

isson1.jpg
Add to Cart
TOPIC: BUSINESS VALUE
Case Study: Monster.com
Creating Global Competitive Power with Predictive Analytics 

Jean Paul Isson, Vice President, Globab BI & Predictive Analytics, Monster Worldwide

Using Predictive analytics to gain a deeper understanding of customer behaviours, increase marketing ROI and drive growth

– Creating global competitive power with business intelligence: Making the right decisions – at the right time

– Avoiding common change management challenges in sales, marketing, customer service, and products

– Developing a BI vision – and implementing it: successful business intelligence implementation models

– Using predictive analytics as a business driver to stay on top of the competition

– Following the Monster Worldwide global BI evolution: How Monster used BI to go from good to great

Length – 51:17 | Email to a Colleague

Price: $195

 

 

abbot.jpg
Add to Cart
TOPIC: SURVEY ANALYSIS
Case Study: YMCA
Turning Member Satisfaction Surveys into an Actionable Narrative 

Dean Abbott, President, Abbott Analytics

Employees are a key constituency at the Y and previous analysis has shown that their attitudes have a direct bearing on Member Satisfaction. This session will describe a successful approach for the analysis of YMCA employee surveys. Decision trees are built and examined in depth to identify key questions in describing key employee satisfaction metrics, including several interesting groupings of employee attitudes. Our approach will be contrasted with other factor analysis and regression-based approaches to survey analysis that we used initially. The predictive models described are currently in use and resulted in both greater understanding of employee attitudes, and a revised “short-form” survey with fewer key questions identified by the decision trees as the most important predictors.

Length – 50:19 | Email to a Colleague

Price: $195

 

 

rexer.jpg
Add to Cart
TOPIC: INDUSTRY TRENDS
2010 Data Minter Survey Results: Highlights
 

Karl Rexer, Ph.D., Rexer Analytics

Do you want to know the views, actions, and opinions of the data mining community? Each year, Rexer Analytics conducts a global survey of data miners to find out. This year at PAW we unveil the results of our 4th Annual Data Miner Survey. This session will present the research highlights, such as:

– Analytic goals & key challenges

– Impact of the economy

– Regional differences

– Text mining trends

Length – 15:20 | Email to a Colleague

Price: $195

 

 

elder.jpg
Add to Cart
Multiple Case Studies: U.S. DoD, U.S. DHS, SSA
Text Mining: Lessons Learned 

John F. Elder, Chief Scientist, Elder Research, Inc.

Text Mining is the “Wild West” of data mining and predictive analytics – the potential for gain is huge, the capability claims are often tall tales, and the “land rush” for leadership is very much a race.

In solving unstructured (text) analysis challenges, we found that principles from inductive modeling – learning relationships from labeled cases – has great power to enhance text mining. Dr. Elder highlights key technical breakthroughs discovered while working on projects for leading government agencies, including: Text Mining is the “Wild West” of data mining and predictive analytics – the potential for gain is huge, the capability claims are often tall tales, and the “land rush” for leadership is very much a race.

– Prioritizing searches for the Dept. of Homeland Security

– Quick decisions for Social Security Admin. disability

– Document discovery for the Dept. of Defense

– Disease discovery for the Dept. of Homeland Security

– Risk profiling for the Dept. of Defense

Length – 48:58 | Email to a Colleague

Price: $195

 

 

target.jpg
Play video of session: Keynote: How Target Gets the Most out of Its Guest Data to Improve Marketing ROI
Keynote: How Target Gets the Most out of Its Guest Data to Improve Marketing ROI 

Andrew Pole, Senior Manager, Media and Database Marketing, Target

In this session, you’ll learn how Target leverages its own internal guest data to optimize its direct marketing – with the ultimate goal of enhancing our guests’ shopping experience and driving in-store and online performance. You will hear about what guest data is available at Target, how and where we collect it, and how it is used to improve the performance and relevance of direct marketing vehicles. Furthermore, we will discuss Target’s development and usage of guest segmentation, response modeling, and optimization as means to suppress poor performers from mailings, determine relevant product categories and services for online targeted content, and optimally assign receipt marketing offers to our guests when offer quantities are limited.

Length – 47:49 | Email to a Colleague

Free viewing enabled – no charge

 

analytics.jpg
Play video of session: Platinum Sponsor Presentation: Driving Analytics Into Decision Making
Platinum Sponsor Presentation: Driving Analytics Into Decision Making  

Jason Verlen, Director, SPSS Product Strategy & Management, IBM Software Group

Organizations looking to dramatically improve their business outcomes are turning to decision management, a convergence of technology and business processes that is used to streamline and predict the outcome of daily decision-making. IBM SPSS Decision Management technology provides the critical link between analytical insight and recommended actions. In this session you’ll learn how Decision Management software integrates analytics with business rules and business applications for front-line systems such as call center applications, insurance claim processing, and websites. See how you can improve every customer interaction, minimize operational risk, reduce fraud and optimize results.

Length – 17:29 | Email to a Colleague

Free viewing enabled – no charge

 

macy.jpg
Add to Cart
TOPIC: DATA INFRASTRUCTURE AND INTEGRATION
Case Study: Macy’s
The world is not flat (even though modeling software has to think it is) 

Paul Coleman, Director of Marketing Statistics, Macy’s Inc.

Software for statistical modeling generally use flat files, where each record represents a unique case with all its variables. In contrast most large databases are relational, where data are distributed among various normalized tables for efficient storage. Variable creation and model scoring engines are necessary to bridge data mining and storage needs. Development datasets taken from a sampled history require snapshot management. Scoring datasets are taken from the present timeframe and the entire available universe. Organizations, with significant data, must decide when to store or calculate necessary data and understand the consequences for their modeling program.

Length – 34:54 | Email to a Colleague

Price: $195

 

 

gwaltney.jpg
Add to Cart
TOPIC: CUSTOMER VALUE
Case Study: SunTrust
When One Model Will Not Solve the Problem – Using Multiple Models to Create One Solution 

Dudley Gwaltney, Group Vice President, Analytical Modeling, SunTrust Bank

In 2007, SunTrust Bank developed a series of models to identify clients likely to have large changes in deposit balances. The models include three basic binary and two linear regression models.

Based on the models, 15% of SunTrust clients were targeted as those most likely to have large balance changes. These clients accounted for 65% of the absolute balance change and 60% of the large balance change clients. The targeted clients are grouped into a portfolio and assigned to individual SunTrust Retail Branch. Since 2008, the portfolio generated a 2.6% increase in balances over control.

Using the SunTrust example, this presentation will focus on:

– Identifying situations requiring multiple models

– Determining what types of models are needed

– Combining the individual component models into one output

Length – 48:22 | Email to a Colleague

Price: $195

 

 

paychex1.jpg
Add to Cart
TOPIC: RESPONSE & CROSS-SELL
Case Study: Paychex
Staying One Step Ahead of the Competition – Development of a Predictive 401(k) Marketing and Sales Campaign 

Jason Fox, Information Systems and Portfolio Manager,Paychex

In-depth case study of Paychex, Inc. utilizing predictive modeling to turn the tides on competitive pressures within their own client base. Paychex, a leading provider of payroll and human resource solutions, will guide you through the development of a Predictive 401(k) Marketing and Sales model. Through the use of sophisticated data mining techniques and regression analysis the model derives the probability a client will add retirement services products with Paychex or with a competitor. Session will include roadblocks that could have ended development and ROI analysis. Speaker: Frank Fiorille, Director of Enterprise Risk Management, Paychex Speaker: Jason Fox, Risk Management Analyst, Paychex

Length – 26:29 | Email to a Colleague

Price: $195

 

 

ling.jpg
Add to Cart
TOPIC: SEGMENTATION
Practitioner: Canadian Imperial Bank of Commerce
Segmentation Do’s and Don’ts 

Daymond Ling, Senior Director, Modelling & Analytics,Canadian Imperial Bank of Commerce

The concept of Segmentation is well accepted in business and has withstood the test of time. Even with the advent of new artificial intelligence and machine learning methods, this old war horse still has its place and is alive and well. Like all analytical methods, when used correctly it can lead to enhanced market positioning and competitive advantage, while improper application can have severe negative consequences.

This session will explore what are the elements of success, and what are the worse practices that lead to failure. The relationship between segmentation and predictive modeling will also be discussed to clarify when it is appropriate to use one versus the other, and how to use them together synergistically.

Length – 45:57 | Email to a Colleague

Price: $195

 

 

kobelius1.jpg
Add to Cart
TOPIC: SOCIAL DATA
Thought Leadership
Social Network Analysis: Killer Application for Cloud Analytics
 

James Kobielus, Senior Analyst, Forrester Research

Social networks such as Twitter and Facebook are a potential goldmine of insights on what is truly going through customers´minds. Every company wants to know whether, how, how often, and by whom they´re being mentioned across the billowing new cloud of social media. Just as important, every company wants to influence those discussions in their favor, target new business, and harvest maximum revenue potential. In this session, Forrester analyst James Kobielus identifies fruitful applications of social network analysis in customer service, sales, marketing, and brand management. He presents a roadmap for enterprises to leverage their inline analytics initiatives and leverage high-performance data warehousing (DW) clouds and appliances in order to analyze shifting patterns of customer sentiment, influence, and propensity. Leveraging Forrester’s ongoing research in advanced analytics and customer relationship management, Kobielus will discuss industry trends, commercial modeling tools, and emerging best practices in social network analysis, which represents a game-changing new discipline in predictive analytics.

Length – 48:16 | Email to a Colleague

Price: $195

 

 

dogan.jpg
Add to Cart
TOPIC: HEALTHCARE – INTERNATIONAL TARGETING
Case Study: Life Line Screening
Taking CRM Global Through Predictive Analytics 

Ozgur Dogan,
VP, Quantitative Solutions Group, Merkle Inc

Trish Mathe,
Director of Database Marketing, Life Line Screening

While Life Line is successfully executing a US CRM roadmap, they are also beginning this same evolution abroad. They are beginning in the UK where Merkle procured data and built a response model that is pulling responses over 30% higher than competitors. This presentation will give an overview of the US CRM roadmap, and then focus on the beginning of their strategy abroad, focusing on the data procurement they could not get anywhere else but through Merkle and the successful modeling and analytics for the UK. Speaker: Ozgur Dogan, VP, Quantitative Solutions Group, Merkle Inc Speaker: Trish Mathe, Director of Database Marketing, Life Line Screening

Length – 40:12 | Email to a Colleague

Price: $195

 

 

sambamoorthi1.jpg
Add to Cart
TOPIC: SURVEY ANALYSIS
Case Study: Forrester
Making Survey Insights Addressable and Scalable – The Case Study of Forrester’s Technographics Benchmark Survey 

Nethra Sambamoorthi, Team Leader, Consumer Dynamics & Analytics, Global Consulting, Acxiom Corporation

Marketers use surveys to create enterprise wide applicable strategic insights to: (1) develop segmentation schemes, (2) summarize consumer behaviors and attitudes for the whole US population, and (3) use multiple surveys to draw unified views about their target audience. However, these insights are not directly addressable and scalable to the whole consumer universe which is very important when applying the power of survey intelligence to the one to one consumer marketing problems marketers routinely face. Acxiom partnered with Forrester Research, creating addressable and scalable applications of Forrester’s Technographics Survey and applied it successfully to a number of industries and applications.

Length – 39:23 | Email to a Colleague

Price: $195

 

 

zasadil.jpg
Add to Cart
TOPIC: HEALTHCARE
Case Study: UPMC Health Plan
A Predictive Model for Hospital Readmissions 

Scott Zasadil, Senior Scientist, UPMC Health Plan

Hospital readmissions are a significant component of our nation’s healthcare costs. Predicting who is likely to be readmitted is a challenging problem. Using a set of 123,951 hospital discharges spanning nearly three years, we developed a model that predicts an individual’s 30-day readmission should they incur a hospital admission. The model uses an ensemble of boosted decision trees and prior medical claims and captures 64% of all 30-day readmits with a true positive rate of over 27%. Moreover, many of the ‘false’ positives are simply delayed true positives. 53% of the predicted 30-day readmissions are readmitted within 180 days.

Length – 54:18 | Email to a Colleague

Price: $195

Complex Event Processing- SASE Language

Logo of the anti-RFID campaign by German priva...
Image via Wikipedia

Complex Event Processing (CEP- not to be confused by Circular Probability Error) is defined processing many events happening across all the layers of an organization, identifying the most meaningful events within the event cloud, analyzing their impact, and taking subsequent action in real time.

Software supporting CEP are-

Oracle http://www.oracle.com/us/technologies/soa/service-oriented-architecture-066455.html

Oracle CEP is a Java application server for the development and deployment of high-performance event driven applications. It can detect patterns in the flow of events and message payloads, often based on filtering, correlation, and aggregation across event sources, and includes industry leading temporal and ordering capabilities. It supports ultra-high throughput (1 million/sec++) and microsecond latency.

Tibco is also trying to get into this market (it claims to have a 40 % market share in the public CEP market 😉 though probably they have not measured the DoE and DoD as worthy of market share yet

– see webcast by TIBCO ‘s head here http://www.tibco.com/products/business-optimization/complex-event-processing/default.jsp

and product info here-http://www.tibco.com/products/business-optimization/complex-event-processing/businessevents/default.jsp

TIBCO is the undisputed leader in complex event processing (CEP) software with over 40 percent market share, according to a recent IDC Study.

A good explanation of how social media itself can be used as an analogy for CEP is given in this SAS Global Paper

http://support.sas.com/resources/papers/proceedings10/040-2010.pdf

You can see a report on Predictive Analytics and Data Mining  in q1 2010 also from SAS’s website  at –http://www.sas.com/news/analysts/forresterwave-predictive-analytics-dm-104388-0210.pdf

A very good explanation on architecture involved is given by SAS CTO Keith Collins here on SAS’s Knowledge Exchange site,

http://www.sas.com/knowledge-exchange/risk/four-ways-divide-conquer.html

What it is: Methods 1 through 3 look at historical data and traditional architectures with information stored in the warehouse. In this environment, it often takes months of data cleansing and preparation to get the data ready to analyze. Now, what if you want to make a decision or determine the effect of an action in real time, as a sale is made, for instance, or at a specific step in the manufacturing process. With streaming data architectures, you can look at data in the present and make immediate decisions. The larger flood of data coming from smart phones, online transactions and smart-grid houses will continue to increase the amount of data that you might want to analyze but not keep. Real-time streaming, complex event processing (CEP) and analytics will all come together here to let you decide on the fly which data is worth keeping and which data to analyze in real time and then discard.

When you use it: Radio-frequency identification (RFID) offers a good user case for this type of architecture. RFID tags provide a lot of information, but unless the state of the item changes, you don’t need to keep warehousing the data about that object every day. You only keep data when it moves through the door and out of the warehouse.

The same concept applies to a customer who does the same thing over and over. You don’t need to keep storing data for analysis on a regular pattern, but if they change that pattern, you might want to start paying attention.

Figure  4: Traditional architecture vs. streaming architecture

Figure 4: Traditional architecture vs. streaming architecture

 

In academia  here is something called SASE Language

  • A rich declarative event language
  • Formal semantics of the event language
  • Theorectical underpinnings of CEP
  • An efficient automata-based implementation

http://sase.cs.umass.edu/

and

http://avid.cs.umass.edu/sase/index.php?page=navleft_1col

Financial Services

The query below retrieves the total trading volume of Google stocks in the 4 hour period after some bad news occurred.

PATTERN SEQ(News a, Stock+ b[ ])WHERE   [symbol]    AND	a.type = 'bad'    AND	b[i].symbol = 'GOOG' WITHIN  4 hoursHAVING  b[b.LEN].volume < 80%*b[1].volumeRETURN  sum(b[ ].volume)

The next query reports a one-hour period in which the price of a stock increased from 10 to 20 and its trading volume stayed relatively stable.

PATTERN	SEQ(Stock+ a[])WHERE 	 [symbol]   AND	  a[1].price = 10   AND	  a[i].price > a[i-1].price   AND	  a[a.LEN].price = 20            WITHIN  1 hourHAVING	avg(a[].volume) ≥ a[1].volumeRETURN	a[1].symbol, a[].price

The third query detects a more complex trend: in an hour, the volume of a stock started high, but after a period of price increasing or staying relatively stable, the volume plummeted.

PATTERN SEQ(Stock+ a[], Stock b)WHERE 	 [symbol]   AND	  a[1].volume > 1000   AND	  a[i].price > avg(a[…i-1].price))   AND	  b.volume < 80% * a[a.LEN].volume           WITHIN  1 hourRETURN	a[1].symbol, a[].(price,volume), b.(price,volume)

(note from Ajay-

 

I was not really happy about the depth of resources on CEP available online- there seem to be missing bits and pieces in both open source, academic and corporate information- one reason for this is the obvious military dual use of this technology- like feeds from Satellite, Audio Scans, etc)

Predictive Analytics World March2011 SF

USGS Satellite photo of the San Francisco Bay ...
Image via Wikipedia

Message from PAWCON-

 

Predictive Analytics World, Mar 14-15 2011, San Francisco, CA

More info: pawcon.com/sanfrancisco

Agenda at-a-glance: pawcon.com/sanfrancisco/2011/agenda_overview.php

PAW’s San Francisco 2011 program is the richest and most diverse yet, including over 30 sessions across two tracks – an “All Audiences” and an “Expert/Practitioner” track — so you can witness how predictive analytics is applied at Bank of America, Bank of the West, Best Buy, CA State Automobile Association, Cerebellum Capital, Chessmetrics, Fidelity, Gaia Interactive, GE Capital, Google, HealthMedia, Hewlett Packard, ICICI Bank (India), MetLife, Monster.com, Orbitz, PayPal/eBay, Richmond, VA Police Dept, U. of Melbourne, Yahoo!, YMCA, and a major N. American telecom, plus insights from projects for Anheiser-Busch, the SSA, and Netflix.

PAW’s agenda covers hot topics and advanced methods such as uplift modeling (net lift), ensemble models, social data (6 sessions on this), search marketing, crowdsourcing, blackbox trading, fraud detection, risk management, survey analysis, and other innovative applications that benefit organizations in new and creative ways.

Predictive Analytics World is the only conference of its kind, delivering vendor-neutral sessions across verticals such as banking, financial services, e-commerce, education, government, healthcare, high technology, insurance, non-profits, publishing, social gaming, retail and telecommunications

And PAW covers the gamut of commercial applications of predictive analytics, including response modeling, customer retention with churn modeling, product recommendations, fraud detection, online marketing optimization, human resource decision-making, law enforcement, sales forecasting, and credit scoring.

WORKSHOPS. PAW also features pre- and post-conference workshops that complement the core conference program. Workshop agendas include advanced predictive modeling methods, hands-on training and enterprise decision management.

More info: pawcon.com/sanfrancisco

Agenda at-a-glance: pawcon.com/sanfrancisco/2011/agenda_overview.php

Be sure to register by Dec 7 for the Super Early Bird rate (save $400):
pawcon.com/sanfrancisco/register.php

If you’d like our informative event updates, sign up at:
pawcon.com/signup-us.php

Data Mining 2010:SAS Conference in Vegas

An interesting conference which I attended last year, this year one of the main guests is an ex professor of mine at UTenn. I am India bound this year though for family reasons.

http://www.sas.com/events/dmconf/over.html

Latest News

Early Bird Special
Register for M2010 before Sept. 17 and save $200 on conference fees!

Additional Data Mining Resources
Find additional data mining resouces including links to whitepapers, webinars, audio seminars, videos, blogs and online communities.

Location
Caesars Palace
Las Vegas, NV

Conference: October 25-26
Pre-conference workshops: October 24
Post-conference training: October 27-29

The M2010 Data Mining Conference is an international educational conference and exhibition for data mining practitioners including analysts, statisticians, programmers, consultants and anyone involved with data management within their organization, Hosted by SAS, M2010 is now in its 13th year and has become the world’s largest data mining conference, attracting over 600 people from various industries including Financial Services, Retail, Insurance, Technology, Education, Healthcare, Pharmaceutical, Government and more.

This conference is the top-choice for serious education and career networking. Conference highlights include

  • 6 keynotes
  • 36 sessions
  • 6 session tracks
  • exhibit hall
  • poster session
  • SAS software training
  • educational workshops
  • special events
  • networking opportunities
  • predictive modeling certification testing event.

Session Topics

  • Business applications
  • Data augmentation
  • Perspectives from the financial services industry
  • Fraud detection
  • Perspectives from the healthcare industry
  • New and emerging technologies
  • Perspectives from the retail industry
  • Data mining in marketing
  • Retention and Life Cycle Analysis
  • Text mining
  • And more! (View session abstracts.)
%d bloggers like this: