Interview Markus Schmidberger ,Cloudnumbers.com

Here is an interview with Markus Schmidberger, Senior Community Manager for cloudnumbers.com. Cloudnumbers.com is the exciting new cloud startup for scientific computing. It basically enables transition to a R and other platforms in the cloud and makes it very easy and secure from the traditional desktop/server model of operation.

Ajay- Describe the startup story for setting up Cloudnumbers.com

Markus- In 2010 the company founders Erik Muttersbach (TU München), Markus Fensterer (TU München) and Moritz v. Petersdorff-Campen (WHU Vallendar) started with the development of the cloud computing environment. Continue reading “Interview Markus Schmidberger ,Cloudnumbers.com”

Interview Dan Steinberg Founder Salford Systems

Here is an interview with Dan Steinberg, Founder and President of Salford Systems (http://www.salford-systems.com/ )

Ajay- Describe your journey from academia to technology entrepreneurship. What are the key milestones or turning points that you remember.

 Dan- When I was in graduate school studying econometrics at Harvard,  a number of distinguished professors at Harvard (and MIT) were actively involved in substantial real world activities.  Professors that I interacted with, or studied with, or whose software I used became involved in the creation of such companies as Sun Microsystems, Data Resources, Inc. or were heavily involved in business consulting through their own companies or other influential consultants.  Some not involved in private sector consulting took on substantial roles in government such as membership on the President’s Council of Economic Advisors. The atmosphere was one that encouraged free movement between academia and the private sector so the idea of forming a consulting and software company was quite natural and did not seem in any way inconsistent with being devoted to the advancement of science.

 Ajay- What are the latest products by Salford Systems? Any future product plans or modification to work on Big Data analytics, mobile computing and cloud computing.

 Dan- Our central set of data mining technologies are CART, MARS, TreeNet, RandomForests, and PRIM, and we have always maintained feature rich logistic regression and linear regression modules. In our latest release scheduled for January 2012 we will be including a new data mining approach to linear and logistic regression allowing for the rapid processing of massive numbers of predictors (e.g., one million columns), with powerful predictor selection and coefficient shrinkage. The new methods allow not only classic techniques such as ridge and lasso regression, but also sub-lasso model sizes. Clear tradeoff diagrams between model complexity (number of predictors) and predictive accuracy allow the modeler to select an ideal balance suitable for their requirements.

The new version of our data mining suite, Salford Predictive Modeler (SPM), also includes two important extensions to the boosted tree technology at the heart of TreeNet.  The first, Importance Sampled learning Ensembles (ISLE), is used for the compression of TreeNet tree ensembles. Starting with, say, a 1,000 tree ensemble, the ISLE compression might well reduce this down to 200 reweighted trees. Such compression will be valuable when models need to be executed in real time. The compression rate is always under the modeler’s control, meaning that if a deployed model may only contain, say, 30 trees, then the compression will deliver an optimal 30-tree weighted ensemble. Needless to say, compression of tree ensembles should be expected to be lossy and how much accuracy is lost when extreme compression is desired will vary from case to case. Prior to ISLE, practitioners have simply truncated the ensemble to the maximum allowable size.  The new methodology will substantially outperform truncation.

The second major advance is RULEFIT, a rule extraction engine that starts with a TreeNet model and decomposes it into the most interesting and predictive rules. RULEFIT is also a tree ensemble post-processor and offers the possibility of improving on the original TreeNet predictive performance. One can think of the rule extraction as an alternative way to explain and interpret an otherwise complex multi-tree model. The rules extracted are similar conceptually to the terminal nodes of a CART tree but the various rules will not refer to mutually exclusive regions of the data.

 Ajay- You have led teams that have won multiple data mining competitions. What are some of your favorite techniques or approaches to a data mining problem.

 Dan- We only enter competitions involving problems for which our technology is suitable, generally, classification and regression. In these areas, we are  partial to TreeNet because it is such a capable and robust learning machine. However, we always find great value in analyzing many aspects of a data set with CART, especially when we require a compact and easy to understand story about the data. CART is exceptionally well suited to the discovery of errors in data, often revealing errors created by the competition organizers themselves. More than once, our reports of data problems have been responsible for the competition organizer’s decision to issue a corrected version of the data and we have been the only group to discover the problem.

In general, tackling a data mining competition is no different than tackling any analytical challenge. You must start with a solid conceptual grasp of the problem and the actual objectives, and the nature and limitations of the data. Following that comes feature extraction, the selection of a modeling strategy (or strategies), and then extensive experimentation to learn what works best.

 Ajay- I know you have created your own software. But are there other software that you use or liked to use?

 Dan- For analytics we frequently test open source software to make sure that our tools will in fact deliver the superior performance we advertise. In general, if a problem clearly requires technology other than that offered by Salford, we advise clients to seek other consultants expert in that other technology.

 Ajay- Your software is installed at 3500 sites including 400 universities as per http://www.salford-systems.com/company/aboutus/index.html What is the key to managing and keeping so many customers happy?

 Dan- First, we have taken great pains to make our software reliable and we make every effort  to avoid problems related to bugs.  Our testing procedures are extensive and we have experts dedicated to stress-testing software . Second, our interface is designed to be natural, intuitive, and easy to use, so the challenges to the new user are minimized. Also, clear documentation, help files, and training videos round out how we allow the user to look after themselves. Should a client need to contact us we try to achieve 24-hour turn around on tech support issues and monitor all tech support activity to ensure timeliness, accuracy, and helpfulness of our responses. WebEx/GotoMeeting and other internet based contact permit real time interaction.

 Ajay- What do you do to relax and unwind?

 Dan- I am in the gym almost every day combining weight and cardio training. No matter how tired I am before the workout I always come out energized so locating a good gym during my extensive travels is a must. I am also actively learning Portuguese so I look to watch a Brazilian TV show or Portuguese dubbed movie when I have time; I almost never watch any form of video unless it is available in Portuguese.

 Biography-

http://www.salford-systems.com/blog/dan-steinberg.html

Dan Steinberg, President and Founder of Salford Systems, is a well-respected member of the statistics and econometrics communities. In 1992, he developed the first PC-based implementation of the original CART procedure, working in concert with Leo Breiman, Richard Olshen, Charles Stone and Jerome Friedman. In addition, he has provided consulting services on a number of biomedical and market research projects, which have sparked further innovations in the CART program and methodology.

Dr. Steinberg received his Ph.D. in Economics from Harvard University, and has given full day presentations on data mining for the American Marketing Association, the Direct Marketing Association and the American Statistical Association. After earning a PhD in Econometrics at Harvard Steinberg began his professional career as a Member of the Technical Staff at Bell Labs, Murray Hill, and then as Assistant Professor of Economics at the University of California, San Diego. A book he co-authored on Classification and Regression Trees was awarded the 1999 Nikkei Quality Control Literature Prize in Japan for excellence in statistical literature promoting the improvement of industrial quality control and management.

His consulting experience at Salford Systems has included complex modeling projects for major banks worldwide, including Citibank, Chase, American Express, Credit Suisse, and has included projects in Europe, Australia, New Zealand, Malaysia, Korea, Japan and Brazil. Steinberg led the teams that won first place awards in the KDDCup 2000, and the 2002 Duke/TeraData Churn modeling competition, and the teams that won awards in the PAKDD competitions of 2006 and 2007. He has published papers in economics, econometrics, computer science journals, and contributes actively to the ongoing research and development at Salford.

#rstats -Basic Data Manipulation using R

Continuing my series of basic data manipulation using R. For people knowing analytics and
new to R.
1 Keeping only some variables

Using subset we can keep only the variables we want-

Sitka89 <- subset(Sitka89, select=c(size,Time,treat))

Will keep only the variables we have selected (size,Time,treat).

2 Dropping some variables

Harman23.cor$cov.arm.span <- NULL
This deletes the variable named cov.arm.span in the dataset Harman23.cor

3 Keeping records based on character condition

Titanic.sub1<-subset(Titanic,Sex=="Male")

Note the double equal-to sign
4 Keeping records based on date/time condition

subset(DF, as.Date(Date) >= '2009-09-02' & as.Date(Date) <= '2009-09-04')

5 Converting Date Time Formats into other formats

if the variable dob is “01/04/1977) then following will convert into a date object

z=strptime(dob,”%d/%m/%Y”)

and if the same date is 01Apr1977

z=strptime(dob,"%d%b%Y")

6 Difference in Date Time Values and Using Current Time

The difftime function helps in creating differences in two date time variables.

difftime(time1, time2, units='secs')

or

difftime(time1, time2, tz = "", units = c("auto", "secs", "mins", "hours", "days", "weeks"))

For current system date time values you can use

Sys.time()

Sys.Date()

This value can be put in the difftime function shown above to calculate age or time elapsed.

7 Keeping records based on numerical condition

Titanic.sub1<-subset(Titanic,Freq >37)

For enhanced usage-
you can also use the R Commander GUI with the sub menu Data > Active Dataset

8 Sorting Data

Sorting A Data Frame in Ascending Order by a variable

AggregatedData<- sort(AggregatedData, by=~ Package)

Sorting a Data Frame in Descending Order by a variable

AggregatedData<- sort(AggregatedData, by=~ -Installed)

9 Transforming a Dataset Structure around a single variable

Using the Reshape2 Package we can use melt and acast functions

library("reshape2")

tDat.m<- melt(tDat)

tDatCast<- acast(tDat.m,Subject~Item)

If we choose not to use Reshape package, we can use the default reshape method in R. Please do note this takes longer processing time for bigger datasets.

df.wide <- reshape(df, idvar="Subject", timevar="Item", direction="wide")

10 Type in Data

Using scan() function we can type in data in a list

11 Using Diff for lags and Cum Sum function forCumulative Sums

We can use the diff function to calculate difference between two successive values of a variable.

Diff(Dataset$X)

Cumsum function helps to give cumulative sum

Cumsum(Dataset$X)

> x=rnorm(10,20) #This gives 10 Randomly distributed numbers with Mean 20

> x

[1] 20.76078 19.21374 18.28483 20.18920 21.65696 19.54178 18.90592 20.67585

[9] 20.02222 18.99311

> diff(x)

[1] -1.5470415 -0.9289122 1.9043664 1.4677589 -2.1151783 -0.6358585 1.7699296

[8] -0.6536232 -1.0291181 >

cumsum(x)

[1] 20.76078 39.97453 58.25936 78.44855 100.10551 119.64728 138.55320

[8] 159.22905 179.25128 198.24438

> diff(x,2) # The diff function can be used as diff(x, lag = 1, differences = 1, ...) where differences is the order of differencing

[1] -2.4759536 0.9754542 3.3721252 -0.6474195 -2.7510368 1.1340711 1.1163064

[8] -1.6827413

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth & Brooks/Cole.

12 Merging Data

Deducer GUI makes it much simpler to merge datasets. The simplest syntax for a merge statement is

totalDataframeZ <- merge(dataframeX,dataframeY,by=c("AccountId","Region"))

13 Aggregating and group processing of a variable

We can use multiple methods for aggregating and by group processing of variables.
Two functions we explore here are aggregate and Tapply.

Refering to the R Online Manual at
[http://stat.ethz.ch/R-manual/R-patched/library/stats/html/aggregate.html]

## Compute the averages for the variables in 'state.x77', grouped

## according to the region (Northeast, South, North Central, West) that

## each state belongs to

aggregate(state.x77, list(Region = state.region), mean)

Using TApply

## tapply(Summary Variable, Group Variable, Function)

Reference

[http://www.ats.ucla.edu/stat/r/library/advanced_function_r.htm#tapply]

We can also use specialized packages for data manipulation.

For additional By-group processing you can see the doBy package as well as Plyr package
 for data manipulation.Doby contains a variety of utilities including:
 1) Facilities for groupwise computations of summary statistics and other facilities for working with grouped data.
 2) General linear contrasts and LSMEANS (least-squares-means also known as population means),
 3) HTMLreport for autmatic generation of HTML file from R-script with a minimum of markup, 4) various other utilities and is available at[ http://cran.r-project.org/web/packages/doBy/index.html]
Also Available at [http://cran.r-project.org/web/packages/plyr/index.html],
Plyr is a set of tools that solves a common set of problems:
you need to break a big problem down into manageable pieces,
operate on each pieces and then put all the pieces back together.
 For example, you might want to fit a model to each spatial location or
 time point in your study, summarise data by panels or collapse high-dimensional arrays
 to simpler summary statistics.

Interview Eberhard Miethke and Dr. Mamdouh Refaat, Angoss Software

Here is an interview with Eberhard Miethke and Dr. Mamdouh Refaat, of Angoss Software. Angoss is a global leader in delivering business intelligence software and predictive analytics solutions that help businesses capitalize on their data by uncovering new opportunities to increase sales and profitability and to reduce risk.

Ajay-  Describe your personal journey in software. How can we guide young students to pursue more useful software development than just gaming applications.

 Mamdouh- I started using computers long time ago when they were programmed using punched cards! First in Fortran, then C, later C++, and then the rest. Computers and software were viewed as technical/engineering tools, and that’s why we can still see the heavy technical orientation of command languages such as Unix shells and even in the windows Command shell. However, with the introduction of database systems and Microsoft office apps, it was clear that business will be the primary user and field of application for software. My personal trip in software started with scientific applications, then business and database systems, and finally statistical software – which you can think of it as returning to the more scientific orientation. However, with the wide acceptance of businesses of the application of statistical methods in different fields such as marketing and risk management, it is a fast growing field that in need of a lot of innovation.

Ajay – Angoss makes multiple data mining and analytics products. could you please introduce us to your product portfolio and what specific data analytics need they serve.

a- Attached please find our main product flyers for KnowledgeSTUDIO and KnowledgeSEEKER. We have a 3rd product called “strategy builder” which is an add-on to the decision tree modules. This is also described in the flyer.

(see- Angoss Knowledge Studio Product Guide April2011  and http://www.scribd.com/doc/63176430/Angoss-Knowledge-Seeker-Product-Guide-April2011  )

Ajay-  The trend in analytics is for big data and cloud computing- with hadoop enabling processing of massive data sets on scalable infrastructure. What are your plans for cloud computing, tablet based as well as mobile based computing.

a- This is an area where the plan is still being figured out in all organizations. The current explosion of data collected from mobile phones, text messages, and social websites will need radically new applications that can utilize the data from these sources. Current applications are based on the relational database paradigm designed in the 70’s through the 90’s of the 20th century.

But data sources are generating data in volumes and formats that are challenging this paradigm and will need a set of new tools and possibly programming languages to fit these needs. The cloud computing, tablet based and mobile computing (which are the same thing in my opinion, just different sizes of the device) are also two technologies that have not been explored in analytics yet.

The approach taken so far by most companies, including Angoss, is to rely on new xml-based standards to represent data structures for the particular models. In this case, it is the PMML (predictive modelling mark-up language) standard, in order to allow the interoperability between analytics applications. Standardizing on the representation of models is viewed as the first step in order to allow the implementation of these models to emerging platforms, being that the cloud or mobile, or social networking websites.

The second challenge cited above is the rapidly increasing size of the data to be analyzed. Angoss has already identified this challenge early on and is currently offering in-database analytics drivers for several database engines: Netezza, Teradata and SQL Server.

These drivers allow our analytics products to translate their routines into efficient SQL-based scripts that run in the database engine to exploit its performance as well as the powerful hardware on which it runs. Thus, instead of copying the data to a staging format for analytics, these drivers allow the data to be analyzed “in-place” within the database without moving it.

Thus offering performance, security and integrity. The performance is improved because of the use of the well tuned database engines running on powerful hardware.

Extra security is achieved by not copying the data to other platforms, which could be less secure. And finally, the integrity of the results are vastly improved by making sure that the results are always obtained by analyzing the up-to-date data residing in the database rather than an older copy of the data which could be obsolete by the time the analysis is concluded.

Ajay- What are the principal competing products to your offerings, and what makes your products special or differentiated in value to them (for each customer segment).

a- There are two major players in today’s market that we usually encounter as competitors, they are: SAS and IBM.

SAS offers a data mining workbench in the form of SAS Enterprise Miner, which is closely tied to SAS data mining methodology known as SEMMA.

On the other hand, IBM has recently acquired SPSS, which offered its Clementine data mining software. IBM has now rebranded Clementine as IBM SPSS Modeller.

In comparison to these products, our KnowledgeSTUDIO and KnowledgeSEEKER offer three main advantages: ease of use; affordability; and ease of integration into existing BI environments.

Angoss products were designed to look-and-feel-like popular Microsoft office applications. This makes the learning curve indeed very steep. Typically, an intermediate level analyst needs only 2-3 days of training to become proficient in the use of the software with all its advanced features.

Another important feature of Angoss software products is their integration with SAS/base product, and SQL-based database engines. All predictive models generated by Angoss can be automatically translated to SAS and SQL scripts. This allows the generation of scoring code for these common platforms. While the software interface simplifies all the tasks to allow business users to take advantage of the value added by predictive models, the software includes advanced options to allow experienced statisticians to fine-tune their models by adjusting all model parameters as needed.

In addition, Angoss offers a unique product called StrategyBuilder, which allows the analyst to add key performance indicators (KPI’s) to predictive models. KPI’s such as profitability, market share, and loyalty are usually required to be calculated in conjunction with any sales and marketing campaign. Therefore, StrategyBuilder was designed to integrate such KPI’s with the results of a predictive model in order to render the appropriate treatment for each customer segment. These results are all integrated into a deployment strategy that can also be translated into an execution code in SQL or SAS.

The above competitive features offered by the software products of Angoss is behind its success in serving over 4000 users from over 500 clients worldwide.

Ajay -Describe a major case study where using Angoss software helped save a big amount of revenue/costs by innovative data mining.

a-Rogers Telecommunications Inc. is one of the largest Canadian telecommunications providers, serving over 8.5 million customers and a revenue of 11.1 Billion Canadian Dollars (2009). In 2008, Rogers engaged Angoss in order to help with the problem of ballooning accounts receivable for a period of 18 months.

The problem was approached by improving the efficiency of the call centre serving the collections process by a set of predictive models. The first set of models were designed to find accounts likely to default ahead of time in order to take preventative measures. A second set of models were designed to optimize the call centre resources to focus on delinquent accounts likely to pay back most of the outstanding balance. Accounts that were identified as not likely to pack quickly were good candidates for “Early-out” treatment, by forwarding them directly to collection agencies. Angoss hosted Rogers’ data and provided on a regular interval the lists of accounts for each treatment to be deployed by the call centre dialler. As a result of this Rogers estimated an improvement of 10% of the collected sums.

Biography-

Mamdouh has been active in consulting, research, and training in various areas of information technology and software development for the last 20 years. He has worked on numerous projects with major organizations in North America and Europe in the areas of data mining, business analytics, business analysis, and engineering analysis. He has held several consulting positions for solution providers including Predict AG in Basel, Switzerland, and as ANGOSS Corp. Mamdouh is the Director of Professional services for EMEA region of ANGOSS Software. Mamdouh received his PhD in engineering from the University of Toronto and his MBA from the University of Leeds, UK.

Mamdouh is the author of:

"Credit Risk Scorecards: Development and Implmentation using SAS"
 "Data Preparation for Data Mining Using SAS",
 (The Morgan Kaufmann Series in Data Management Systems) (Paperback)
 and co-author of
 "Data Mining: Know it all",Morgan Kaufmann



Eberhard Miethke  works as a senior sales executive for Angoss

 

About Angoss-

Angoss is a global leader in delivering business intelligence software and predictive analytics to businesses looking to improve performance across sales, marketing and risk. With a suite of desktop, client-server and in-database software products and Software-as-a-Service solutions, Angoss delivers powerful approaches to turn information into actionable business decisions and competitive advantage.

Angoss software products and solutions are user-friendly and agile, making predictive analytics accessible and easy to use.

Using #Rstats for online data access

There are multiple packages in R to read data straight from online datasets.
These are as follows- Continue reading “Using #Rstats for online data access”

Interview Mike Boyarski Jaspersoft

Here is an interview with Mike Boyarski , Director Product Marketing at Jaspersoft

.

 

the largest BI community with over 14 million downloads, nearly 230,000 registered members, representing over 175,000 production deployments, 14,000 customers, across 100 countries.

Ajay- Describe your career in science from Biology to marketing great software.
Mike- I studied Biology with the assumption I’d pursue a career in medicine. It took about 2 weeks during an internship at a Los Angeles hospital to determine I should do something else.  I enjoyed learning about life science, but the whole health care environment was not for me.  I was initially introduced to enterprise-level software while at Applied Materials within their Microcontamination group.  I was able to assist with an internal application used to collect contamination data.  I later joined Oracle to work on an Oracle Forms application used to automate the production of software kits (back when documentation and CDs had to be physically shipped to recognize revenue). This gave me hands on experience with Oracle 7, web application servers, and the software development process.
I then transitioned to product management for various products including application servers, software appliances, and Oracle’s first generation SaaS based software infrastructure. In 2006, with the Siebel and PeopleSoft acquisitions underway, I moved on to Ingres to help re-invigorate their solid yet antiquated technology. This introduced me to commercial open source software and the broader Business Intelligence market.  From Ingres I joined Jaspersoft, one of the first and most popular open source Business Intelligence vendors, serving as head of product marketing since mid 2009.
Ajay- Describe some of the new features in Jaspersoft 4.1 that help differentiate it from the rest of the crowd. What are the exciting product features we can expect from Jaspersoft down the next couple of years.
Mike- Jaspersoft 4.1 was an exciting release for our customers because we were able to extend the latest UI advancements in our ad hoc report designer to the data analysis environment. Now customers can use a unified intuitive web-based interface to perform several powerful and interactive analytic functions across any data source, whether its relational, non-relational, or a Big Data source.
 The reality is that most (roughly 70%) of todays BI adoption is in the form of reports and dashboards. These tools are used to drive and measure an organizations business, however, data analysis presents the most strategic opportunity for companies because it can identify new opportunities, efficiencies, and competitive differentiation.  As more data comes online, the difference between those companies that are successful and those that are not will likely be attributed to their ability to harness data analysis techniques to drive and improve business performance. Thus, with Jaspersoft 4.1, and our improved ad hoc reporting and analysis UI we can effectively address a broader set of BI requirements for organizations of all sizes.
Ajay-  What do you think is a good metric to measure influence of an open source software product – is it revenue or is it number of downloads or number of users. How does Jaspersoft do by these counts.
Mike- History has shown that open source software is successful as a “bottoms up” disrupter within IT or the developer market.  Today, many new software projects and startup ventures are birthed on open source software, often initiated with little to no budget. As the organization achieves success with a particular project, the next initiative tends to be larger and more strategic, often displacing what was historically solved with a proprietary solution. These larger deployments strengthen the technology over time.
Thus, the more proven and battle tested an open source solution is, often measured via downloads, deployments, community size, and community activity, usually equates to its long term success. Linux, Tomcat, and MySQL have plenty of statistics to model this lifecycle. This model is no different for open source BI.
The success to date of Jaspersoft is directly tied to its solid proven technology and the vibrancy of the community.  We proudly and openly claim to have the largest BI community with over 14 million downloads, nearly 230,000 registered members, representing over 175,000 production deployments, 14,000 customers, across 100 countries.  Every day, 30,000 developers are using Jaspersoft to build BI applications.  Behind Excel, its hard to imagine a more widely used BI tool in the market.  Jaspersoft could not reach these kind of numbers with crippled or poorly architected software.
Ajay- What are your plans for leveraging cloud computing, mobile and tablet platforms and for making Jaspersoft more easy and global  to use.