Interview Eberhard Miethke and Dr. Mamdouh Refaat, Angoss Software

Here is an interview with Eberhard Miethke and Dr. Mamdouh Refaat, of Angoss Software. Angoss is a global leader in delivering business intelligence software and predictive analytics solutions that help businesses capitalize on their data by uncovering new opportunities to increase sales and profitability and to reduce risk.

Ajay-  Describe your personal journey in software. How can we guide young students to pursue more useful software development than just gaming applications.

 Mamdouh- I started using computers long time ago when they were programmed using punched cards! First in Fortran, then C, later C++, and then the rest. Computers and software were viewed as technical/engineering tools, and that’s why we can still see the heavy technical orientation of command languages such as Unix shells and even in the windows Command shell. However, with the introduction of database systems and Microsoft office apps, it was clear that business will be the primary user and field of application for software. My personal trip in software started with scientific applications, then business and database systems, and finally statistical software – which you can think of it as returning to the more scientific orientation. However, with the wide acceptance of businesses of the application of statistical methods in different fields such as marketing and risk management, it is a fast growing field that in need of a lot of innovation.

Ajay – Angoss makes multiple data mining and analytics products. could you please introduce us to your product portfolio and what specific data analytics need they serve.

a- Attached please find our main product flyers for KnowledgeSTUDIO and KnowledgeSEEKER. We have a 3rd product called “strategy builder” which is an add-on to the decision tree modules. This is also described in the flyer.

(see- Angoss Knowledge Studio Product Guide April2011  and http://www.scribd.com/doc/63176430/Angoss-Knowledge-Seeker-Product-Guide-April2011  )

Ajay-  The trend in analytics is for big data and cloud computing- with hadoop enabling processing of massive data sets on scalable infrastructure. What are your plans for cloud computing, tablet based as well as mobile based computing.

a- This is an area where the plan is still being figured out in all organizations. The current explosion of data collected from mobile phones, text messages, and social websites will need radically new applications that can utilize the data from these sources. Current applications are based on the relational database paradigm designed in the 70’s through the 90’s of the 20th century.

But data sources are generating data in volumes and formats that are challenging this paradigm and will need a set of new tools and possibly programming languages to fit these needs. The cloud computing, tablet based and mobile computing (which are the same thing in my opinion, just different sizes of the device) are also two technologies that have not been explored in analytics yet.

The approach taken so far by most companies, including Angoss, is to rely on new xml-based standards to represent data structures for the particular models. In this case, it is the PMML (predictive modelling mark-up language) standard, in order to allow the interoperability between analytics applications. Standardizing on the representation of models is viewed as the first step in order to allow the implementation of these models to emerging platforms, being that the cloud or mobile, or social networking websites.

The second challenge cited above is the rapidly increasing size of the data to be analyzed. Angoss has already identified this challenge early on and is currently offering in-database analytics drivers for several database engines: Netezza, Teradata and SQL Server.

These drivers allow our analytics products to translate their routines into efficient SQL-based scripts that run in the database engine to exploit its performance as well as the powerful hardware on which it runs. Thus, instead of copying the data to a staging format for analytics, these drivers allow the data to be analyzed “in-place” within the database without moving it.

Thus offering performance, security and integrity. The performance is improved because of the use of the well tuned database engines running on powerful hardware.

Extra security is achieved by not copying the data to other platforms, which could be less secure. And finally, the integrity of the results are vastly improved by making sure that the results are always obtained by analyzing the up-to-date data residing in the database rather than an older copy of the data which could be obsolete by the time the analysis is concluded.

Ajay- What are the principal competing products to your offerings, and what makes your products special or differentiated in value to them (for each customer segment).

a- There are two major players in today’s market that we usually encounter as competitors, they are: SAS and IBM.

SAS offers a data mining workbench in the form of SAS Enterprise Miner, which is closely tied to SAS data mining methodology known as SEMMA.

On the other hand, IBM has recently acquired SPSS, which offered its Clementine data mining software. IBM has now rebranded Clementine as IBM SPSS Modeller.

In comparison to these products, our KnowledgeSTUDIO and KnowledgeSEEKER offer three main advantages: ease of use; affordability; and ease of integration into existing BI environments.

Angoss products were designed to look-and-feel-like popular Microsoft office applications. This makes the learning curve indeed very steep. Typically, an intermediate level analyst needs only 2-3 days of training to become proficient in the use of the software with all its advanced features.

Another important feature of Angoss software products is their integration with SAS/base product, and SQL-based database engines. All predictive models generated by Angoss can be automatically translated to SAS and SQL scripts. This allows the generation of scoring code for these common platforms. While the software interface simplifies all the tasks to allow business users to take advantage of the value added by predictive models, the software includes advanced options to allow experienced statisticians to fine-tune their models by adjusting all model parameters as needed.

In addition, Angoss offers a unique product called StrategyBuilder, which allows the analyst to add key performance indicators (KPI’s) to predictive models. KPI’s such as profitability, market share, and loyalty are usually required to be calculated in conjunction with any sales and marketing campaign. Therefore, StrategyBuilder was designed to integrate such KPI’s with the results of a predictive model in order to render the appropriate treatment for each customer segment. These results are all integrated into a deployment strategy that can also be translated into an execution code in SQL or SAS.

The above competitive features offered by the software products of Angoss is behind its success in serving over 4000 users from over 500 clients worldwide.

Ajay -Describe a major case study where using Angoss software helped save a big amount of revenue/costs by innovative data mining.

a-Rogers Telecommunications Inc. is one of the largest Canadian telecommunications providers, serving over 8.5 million customers and a revenue of 11.1 Billion Canadian Dollars (2009). In 2008, Rogers engaged Angoss in order to help with the problem of ballooning accounts receivable for a period of 18 months.

The problem was approached by improving the efficiency of the call centre serving the collections process by a set of predictive models. The first set of models were designed to find accounts likely to default ahead of time in order to take preventative measures. A second set of models were designed to optimize the call centre resources to focus on delinquent accounts likely to pay back most of the outstanding balance. Accounts that were identified as not likely to pack quickly were good candidates for “Early-out” treatment, by forwarding them directly to collection agencies. Angoss hosted Rogers’ data and provided on a regular interval the lists of accounts for each treatment to be deployed by the call centre dialler. As a result of this Rogers estimated an improvement of 10% of the collected sums.

Biography-

Mamdouh has been active in consulting, research, and training in various areas of information technology and software development for the last 20 years. He has worked on numerous projects with major organizations in North America and Europe in the areas of data mining, business analytics, business analysis, and engineering analysis. He has held several consulting positions for solution providers including Predict AG in Basel, Switzerland, and as ANGOSS Corp. Mamdouh is the Director of Professional services for EMEA region of ANGOSS Software. Mamdouh received his PhD in engineering from the University of Toronto and his MBA from the University of Leeds, UK.

Mamdouh is the author of:

"Credit Risk Scorecards: Development and Implmentation using SAS"
 "Data Preparation for Data Mining Using SAS",
 (The Morgan Kaufmann Series in Data Management Systems) (Paperback)
 and co-author of
 "Data Mining: Know it all",Morgan Kaufmann



Eberhard Miethke  works as a senior sales executive for Angoss

 

About Angoss-

Angoss is a global leader in delivering business intelligence software and predictive analytics to businesses looking to improve performance across sales, marketing and risk. With a suite of desktop, client-server and in-database software products and Software-as-a-Service solutions, Angoss delivers powerful approaches to turn information into actionable business decisions and competitive advantage.

Angoss software products and solutions are user-friendly and agile, making predictive analytics accessible and easy to use.

Interview Dean Abbott Abbott Analytics

Here is an interview with noted Analytics Consultant and trainer Dean Abbott. Dean is scheduled to take a workshop on Predictive Analytics at PAW (Predictive Analytics World Conference)  Oct 18 , 2010 in Washington D.C

Ajay-  Describe your upcoming hands on workshop at Predictive Analytics World and how it can help people learn more predictive modeling.

Refer- http://www.predictiveanalyticsworld.com/dc/2010/handson_predictive_analytics.php

Dean- The hands-on workshop is geared toward individuals who know something about predictive analytics but would like to experience the process. It will help people in two regards. First, by going through the data assessment, preparation, modeling and model assessment stages in one day, the attendees will see how predictive analytics works in reality, including some of the pain associated with false starts and mistakes. At the same time, they will experience success with building reasonable models to solve a problem in a single day. I have found that for many, having to actually build the predictive analytics solution if an eye-opener. Seeing demonstrations show the capabilities of a tool, but greater value for an end-user is the development of intuition of what to do at each each stage of the process that makes the theory of predictive analytics real.

Second, they will gain experience using a top-tier predictive analytics software tool, Enterprise Miner (EM). This is especially helpful for those who are considering purchasing EM, but also for those who have used open source tools and have never experienced the additional power and efficiencies that come with a tool that is well thought out from a business solutions standpoint (as opposed to an algorithm workbench).

Ajay-  You are an instructor with software ranging from SPSS, S Plus, SAS Enterprise Miner, Statistica and CART. What features of each software do you like best and are more suited for application in data cases.

Dean- I’ll add Tibco Spotfire Miner, Polyanalyst and Unica’s Predictive Insight to the list of tools I’ve taught “hands-on” courses around, and there are at least a half dozen more I demonstrate in lecture courses (JMP, Matlab, Wizwhy, R, Ggobi, RapidMiner, Orange, Weka, RandomForests and TreeNet to name a few). The development of software is a fascinating undertaking, and each tools has its own strengths and weaknesses.

I personally gravitate toward tools with data flow / icon interface because I think more that way, and I’ve tired of learning more programming languages.

Since the predictive analytics algorithms are roughly the same (backdrop is backdrop no matter which tool you use), the key differentiators are

(1) how data can be loaded in and how tightly integrated can the tool be with the database,

(2) how well big data can be handled,

(3) how extensive are the data manipulation options,

(4) how flexible are the model reporting options, and

(5) how can you get the models and/or predictions out.

There are vast differences in the tools on these matters, so when I recommend tools for customers, I usually interview them quite extensively to understand better how they use data and how the models will be integrated into their business practice.

A final consideration is related to the efficiency of using the tool: how much automation can one introduce so that user-interaction is minimized once the analytics process has been defined. While I don’t like new programming languages, scripting and programming often helps here, though some tools have a way to run the visual programming data diagram itself without converting it to code.

Ajay- What are your views on the increasing trend of consolidation and mergers and acquisitions in the predictive analytics space. Does this increase the need for vendor neutral analysts and consultants as well as conferences.

Dean- When companies buy a predictive analytics software package, it’s a mixed bag. SPSS purchasing of Clementine was ultimately good for the predictive analytics, though it took several years for SPSS to figure out what they wanted to do with it. Darwin ultimately disappeared after being purchased by Oracle, but the newer Oracle data mining tool, ODM, integrates better with the database than Darwin did or even would have been able to.

The biggest trend and pressure for the commercial vendors is the improvements in the Open Source and GNU tools. These are becoming more viable for enterprise-level customers with big data, though from what I’ve seen, they haven’t caught up with the big commercial players yet. There is great value in bringing both commercial and open source tools to the attention of end-users in the context of solutions (rather than sales) in a conference setting, which is I think an advantage that Predictive Analytics World has.

As a vendor-neutral consultant, flux is always a good thing because I have to be proficient in a variety of tools, and it is the breadth that brings value for customers entering into the predictive analytics space. But it is very difficult to keep up with the rapidly-changing market and that is something I am weighing myself: how many tools should I keep in my active toolbox.

Ajay-  Describe your career and how you came into the Predictive Analytics space. What are your views on various MS Analytics offered by Universities.

Dean- After getting a masters degree in Applied Mathematics, my first job was at a small aerospace engineering company in Charlottesville, VA called Barron Associates, Inc. (BAI); it is still in existence and doing quite well! I was working on optimal guidance algorithms for some developmental missile systems, and statistical learning was a key part of the process, so I but my teeth on pattern recognition techniques there, and frankly, that was the most interesting part of the job. In fact, most of us agreed that this was the most interesting part: John Elder (Elder Research) was the first employee at BAI, and was there at that time. Gerry Montgomery and Paul Hess were there as well and left to form a data mining company called AbTech and are still in analytics space.

After working at BAI, I had short stints at Martin Marietta Corp. and PAR Government Systems were I worked on analytics solutions in DoD, primarily radar and sonar applications. It was while at Elder Research in the 90s that began working in the commercial space more in financial and risk modeling, and then in 1999 I began working as an independent consultant.

One thing I love about this field is that the same techniques can be applied broadly, and therefore I can work on CRM, web analytics, tax and financial risk, credit scoring, survey analysis, and many more application, and cross-fertilize ideas from one domain into other domains.

Regarding MS degrees, let me first write that I am very encouraged that data mining and predictive analytics are being taught in specific class and programs rather than as just an add-on to an advanced statistics or business class. That stated, I have mixed feelings about analytics offerings at Universities.

I find that most provide a good theoretical foundation in the algorithms, but are weak in describing the entire process in a business context. For those building predictive models, the model-building stage nearly always takes much less time than getting the data ready for modeling and reporting results. These are cross-discipline tasks, requiring some understanding of the database world and the business world for us to define the target variable(s) properly and clean up the data so that the predictive analytics algorithms to work well.

The programs that have a practicum of some kind are the most useful, in my opinion. There are some certificate programs out there that have more of a business-oriented framework, and the NC State program builds an internship into the degree itself. These are positive steps in the field that I’m sure will continue as predictive analytics graduates become more in demand.

Biography-

DEAN ABBOTT is President of Abbott Analytics in San Diego, California. Mr. Abbott has over 21 years of experience applying advanced data mining, data preparation, and data visualization methods in real-world data intensive problems, including fraud detection, response modeling, survey analysis, planned giving, predictive toxicology, signal process, and missile guidance. In addition, he has developed and evaluated algorithms for use in commercial data mining and pattern recognition products, including polynomial networks, neural networks, radial basis functions, and clustering algorithms, and has consulted with data mining software companies to provide critiques and assessments of their current features and future enhancements.

Mr. Abbott is a seasoned instructor, having taught a wide range of data mining tutorials and seminars for a decade to audiences of up to 400, including DAMA, KDD, AAAI, and IEEE conferences. He is the instructor of well-regarded data mining courses, explaining concepts in language readily understood by a wide range of audiences, including analytics novices, data analysts, statisticians, and business professionals. Mr. Abbott also has taught both applied and hands-on data mining courses for major software vendors, including Clementine (SPSS, an IBM Company), Affinium Model (Unica Corporation), Statistica (StatSoft, Inc.), S-Plus and Insightful Miner (Insightful Corporation), Enterprise Miner (SAS), Tibco Spitfire Miner (Tibco), and CART (Salford Systems).

Data Mining Survey Results :Tools and Offshoring

Here are some survey results from  Rexer Analytics

The Graphics seem self explanatory: terrific Data Visualization

1) The field of Data Mining seems ripe for either more offshoring to cut down costs or

there will be price pressures to cut costs on software ( read More R and SaaS) and Hardware ( more cloud /time sharing  ?)

2) Satisfaction with both R and SAS seems similar but R seems to score higher than other flavors.

3) An added dimension of  utility ( or say

(satisfaction in terms of analyst comfort + functionality in terms of business benefit) divided by (License + Training + Installation + Transition costs)

would have even extra analysis.

But these are not final results- for that you need to see Dr Karl at Rexer Analytics