Interview Eberhard Miethke and Dr. Mamdouh Refaat, Angoss Software

Here is an interview with Eberhard Miethke and Dr. Mamdouh Refaat, of Angoss Software. Angoss is a global leader in delivering business intelligence software and predictive analytics solutions that help businesses capitalize on their data by uncovering new opportunities to increase sales and profitability and to reduce risk.

Ajay-  Describe your personal journey in software. How can we guide young students to pursue more useful software development than just gaming applications.

 Mamdouh- I started using computers long time ago when they were programmed using punched cards! First in Fortran, then C, later C++, and then the rest. Computers and software were viewed as technical/engineering tools, and that’s why we can still see the heavy technical orientation of command languages such as Unix shells and even in the windows Command shell. However, with the introduction of database systems and Microsoft office apps, it was clear that business will be the primary user and field of application for software. My personal trip in software started with scientific applications, then business and database systems, and finally statistical software – which you can think of it as returning to the more scientific orientation. However, with the wide acceptance of businesses of the application of statistical methods in different fields such as marketing and risk management, it is a fast growing field that in need of a lot of innovation.

Ajay – Angoss makes multiple data mining and analytics products. could you please introduce us to your product portfolio and what specific data analytics need they serve.

a- Attached please find our main product flyers for KnowledgeSTUDIO and KnowledgeSEEKER. We have a 3rd product called “strategy builder” which is an add-on to the decision tree modules. This is also described in the flyer.

(see- Angoss Knowledge Studio Product Guide April2011  and http://www.scribd.com/doc/63176430/Angoss-Knowledge-Seeker-Product-Guide-April2011  )

Ajay-  The trend in analytics is for big data and cloud computing- with hadoop enabling processing of massive data sets on scalable infrastructure. What are your plans for cloud computing, tablet based as well as mobile based computing.

a- This is an area where the plan is still being figured out in all organizations. The current explosion of data collected from mobile phones, text messages, and social websites will need radically new applications that can utilize the data from these sources. Current applications are based on the relational database paradigm designed in the 70’s through the 90’s of the 20th century.

But data sources are generating data in volumes and formats that are challenging this paradigm and will need a set of new tools and possibly programming languages to fit these needs. The cloud computing, tablet based and mobile computing (which are the same thing in my opinion, just different sizes of the device) are also two technologies that have not been explored in analytics yet.

The approach taken so far by most companies, including Angoss, is to rely on new xml-based standards to represent data structures for the particular models. In this case, it is the PMML (predictive modelling mark-up language) standard, in order to allow the interoperability between analytics applications. Standardizing on the representation of models is viewed as the first step in order to allow the implementation of these models to emerging platforms, being that the cloud or mobile, or social networking websites.

The second challenge cited above is the rapidly increasing size of the data to be analyzed. Angoss has already identified this challenge early on and is currently offering in-database analytics drivers for several database engines: Netezza, Teradata and SQL Server.

These drivers allow our analytics products to translate their routines into efficient SQL-based scripts that run in the database engine to exploit its performance as well as the powerful hardware on which it runs. Thus, instead of copying the data to a staging format for analytics, these drivers allow the data to be analyzed “in-place” within the database without moving it.

Thus offering performance, security and integrity. The performance is improved because of the use of the well tuned database engines running on powerful hardware.

Extra security is achieved by not copying the data to other platforms, which could be less secure. And finally, the integrity of the results are vastly improved by making sure that the results are always obtained by analyzing the up-to-date data residing in the database rather than an older copy of the data which could be obsolete by the time the analysis is concluded.

Ajay- What are the principal competing products to your offerings, and what makes your products special or differentiated in value to them (for each customer segment).

a- There are two major players in today’s market that we usually encounter as competitors, they are: SAS and IBM.

SAS offers a data mining workbench in the form of SAS Enterprise Miner, which is closely tied to SAS data mining methodology known as SEMMA.

On the other hand, IBM has recently acquired SPSS, which offered its Clementine data mining software. IBM has now rebranded Clementine as IBM SPSS Modeller.

In comparison to these products, our KnowledgeSTUDIO and KnowledgeSEEKER offer three main advantages: ease of use; affordability; and ease of integration into existing BI environments.

Angoss products were designed to look-and-feel-like popular Microsoft office applications. This makes the learning curve indeed very steep. Typically, an intermediate level analyst needs only 2-3 days of training to become proficient in the use of the software with all its advanced features.

Another important feature of Angoss software products is their integration with SAS/base product, and SQL-based database engines. All predictive models generated by Angoss can be automatically translated to SAS and SQL scripts. This allows the generation of scoring code for these common platforms. While the software interface simplifies all the tasks to allow business users to take advantage of the value added by predictive models, the software includes advanced options to allow experienced statisticians to fine-tune their models by adjusting all model parameters as needed.

In addition, Angoss offers a unique product called StrategyBuilder, which allows the analyst to add key performance indicators (KPI’s) to predictive models. KPI’s such as profitability, market share, and loyalty are usually required to be calculated in conjunction with any sales and marketing campaign. Therefore, StrategyBuilder was designed to integrate such KPI’s with the results of a predictive model in order to render the appropriate treatment for each customer segment. These results are all integrated into a deployment strategy that can also be translated into an execution code in SQL or SAS.

The above competitive features offered by the software products of Angoss is behind its success in serving over 4000 users from over 500 clients worldwide.

Ajay -Describe a major case study where using Angoss software helped save a big amount of revenue/costs by innovative data mining.

a-Rogers Telecommunications Inc. is one of the largest Canadian telecommunications providers, serving over 8.5 million customers and a revenue of 11.1 Billion Canadian Dollars (2009). In 2008, Rogers engaged Angoss in order to help with the problem of ballooning accounts receivable for a period of 18 months.

The problem was approached by improving the efficiency of the call centre serving the collections process by a set of predictive models. The first set of models were designed to find accounts likely to default ahead of time in order to take preventative measures. A second set of models were designed to optimize the call centre resources to focus on delinquent accounts likely to pay back most of the outstanding balance. Accounts that were identified as not likely to pack quickly were good candidates for “Early-out” treatment, by forwarding them directly to collection agencies. Angoss hosted Rogers’ data and provided on a regular interval the lists of accounts for each treatment to be deployed by the call centre dialler. As a result of this Rogers estimated an improvement of 10% of the collected sums.

Biography-

Mamdouh has been active in consulting, research, and training in various areas of information technology and software development for the last 20 years. He has worked on numerous projects with major organizations in North America and Europe in the areas of data mining, business analytics, business analysis, and engineering analysis. He has held several consulting positions for solution providers including Predict AG in Basel, Switzerland, and as ANGOSS Corp. Mamdouh is the Director of Professional services for EMEA region of ANGOSS Software. Mamdouh received his PhD in engineering from the University of Toronto and his MBA from the University of Leeds, UK.

Mamdouh is the author of:

"Credit Risk Scorecards: Development and Implmentation using SAS"
 "Data Preparation for Data Mining Using SAS",
 (The Morgan Kaufmann Series in Data Management Systems) (Paperback)
 and co-author of
 "Data Mining: Know it all",Morgan Kaufmann



Eberhard Miethke  works as a senior sales executive for Angoss

 

About Angoss-

Angoss is a global leader in delivering business intelligence software and predictive analytics to businesses looking to improve performance across sales, marketing and risk. With a suite of desktop, client-server and in-database software products and Software-as-a-Service solutions, Angoss delivers powerful approaches to turn information into actionable business decisions and competitive advantage.

Angoss software products and solutions are user-friendly and agile, making predictive analytics accessible and easy to use.

Credit Downgrade of USA and Triple A Whining

As a person trained , deployed and often asked to comment on macroeconomic shenanigans- I have the following observations to make on the downgrade of US Debt by S&P

1) Credit rating is both a mathematical exercise of debt versus net worth as well as intention to repay. Given the recent deadlock in United States legislature on debt ceiling, it is natural and correct to assume that holding US debt is slightly more risky in 2011 as compared to 2001. That means if the US debt was AAA in 2001 it sure is slightly more risky in 2011.

2) Politicians are criticized the world over in democracies including India, UK and US. This is natural , healthy and enforced by checks and balances by constitution of each country. At the time of writing this, there are protests in India on corruption, in UK on economic disparities, in US on debt vs tax vs spending, Israel on inflation. It is the maturity of the media as well as average educational level of citizenry that amplifies and inflames or dampens sentiment regarding policy and business.

3) Conspicuous consumption has failed both at an environmental and economic level. Cheap debt to buy things you do not need may have made good macro economic sense as long as the things were made by people locally but that is no longer the case. Outsourcing is not all evil, but it sure is not a perfect solution to economics and competitiveness. Outsourcing is good or outsourcing is bad- well it depends.

4) In 1944 , the US took debt to fight Nazism, build atomic power and generally wage a lot of war and lots of dual use inventions. In 2004-2010 the US took debt to fight wars in Iraq, Afghanistan and bail out banks and automobile companies. Some erosion in the values represented by a free democracy has taken place, much to the delight of authoritarian regimes (who have managed to survive Google and Facebook).

5) A Double A rating is still quite a good rating. Noone is moving out of the US Treasuries- I mean seriously what are your alternative financial resources to park your government or central bank assets, euro, gold, oil, rare earth futures, metals or yen??

6) Income disparity as a trigger for social unrest in UK, France and other parts is an ominous looming threat that may lead to more action than the poor maths of S &P. It has been some time since riots occured in the United States and I believe in time series and cycles especially given the rising Gini coefficients .

Gini indices for the United States at various times, according to the US Census Bureau:[8][9][10]

  • 1929: 45.0 (estimated)
  • 1947: 37.6 (estimated)
  • 1967: 39.7 (first year reported)
  • 1968: 38.6 (lowest index reported)
  • 1970: 39.4
  • 1980: 40.3
  • 1990: 42.8
    • (Recalculations made in 1992 added a significant upward shift for later values)
  • 2000: 46.2
  • 2005: 46.9
  • 2006: 47.0 (highest index reported)
  • 2007: 46.3
  • 2008: 46.69
  • 2009: 46.8

7) Again I am slightly suspicious of an American Corporation downgrading the American Governmental debt when it failed to reconcile numbers by 2 trillion and famously managed to avoid downgrading Lehman Brothers.  What are the political affiliations of the S &P board. What are their backgrounds. Check the facts, Watson.

The Chinese government should be concerned if it is holding >1000 tonnes of Gold and >1 trillion plus of US treasuries lest we have a third opium war (as either Gold or US Treasuries will burst)

. Opium in 1850 like the US Treasuries in 2010 have no inherent value except for those addicted to them.

8   ) Ron Paul and Paul Krugman are the two extremes of economic ideology in the US.

Reminds me of the old saying- Robbing Peter to pay Paul. Both the Pauls seem equally unhappy and biased.

I have to read both WSJ and NYT to make sense of what actually is happening in the US as opinionated journalism has managed to elbow out fact based journalism. Do we need analytics in journalism education/ reporting?

9) Panic buying and selling would lead to short term arbitrage positions. People like W Buffet made more money in the crash of 2008 than people did in the boom years of 2006-7

If stocks are cheap- buy. on the dips. Acquire companies before they go for IPOs. Go buy your own stock if you are sitting on  a pile of cash. Buy some technology patents in cloud , mobile, tablet and statistical computing if you have a lot of cash and need to buy some long term assets.

10) Follow all advice above at own risk and no liability to this author 😉

 

Interview Mike Boyarski Jaspersoft

Here is an interview with Mike Boyarski , Director Product Marketing at Jaspersoft

.

 

the largest BI community with over 14 million downloads, nearly 230,000 registered members, representing over 175,000 production deployments, 14,000 customers, across 100 countries.

Ajay- Describe your career in science from Biology to marketing great software.
Mike- I studied Biology with the assumption I’d pursue a career in medicine. It took about 2 weeks during an internship at a Los Angeles hospital to determine I should do something else.  I enjoyed learning about life science, but the whole health care environment was not for me.  I was initially introduced to enterprise-level software while at Applied Materials within their Microcontamination group.  I was able to assist with an internal application used to collect contamination data.  I later joined Oracle to work on an Oracle Forms application used to automate the production of software kits (back when documentation and CDs had to be physically shipped to recognize revenue). This gave me hands on experience with Oracle 7, web application servers, and the software development process.
I then transitioned to product management for various products including application servers, software appliances, and Oracle’s first generation SaaS based software infrastructure. In 2006, with the Siebel and PeopleSoft acquisitions underway, I moved on to Ingres to help re-invigorate their solid yet antiquated technology. This introduced me to commercial open source software and the broader Business Intelligence market.  From Ingres I joined Jaspersoft, one of the first and most popular open source Business Intelligence vendors, serving as head of product marketing since mid 2009.
Ajay- Describe some of the new features in Jaspersoft 4.1 that help differentiate it from the rest of the crowd. What are the exciting product features we can expect from Jaspersoft down the next couple of years.
Mike- Jaspersoft 4.1 was an exciting release for our customers because we were able to extend the latest UI advancements in our ad hoc report designer to the data analysis environment. Now customers can use a unified intuitive web-based interface to perform several powerful and interactive analytic functions across any data source, whether its relational, non-relational, or a Big Data source.
 The reality is that most (roughly 70%) of todays BI adoption is in the form of reports and dashboards. These tools are used to drive and measure an organizations business, however, data analysis presents the most strategic opportunity for companies because it can identify new opportunities, efficiencies, and competitive differentiation.  As more data comes online, the difference between those companies that are successful and those that are not will likely be attributed to their ability to harness data analysis techniques to drive and improve business performance. Thus, with Jaspersoft 4.1, and our improved ad hoc reporting and analysis UI we can effectively address a broader set of BI requirements for organizations of all sizes.
Ajay-  What do you think is a good metric to measure influence of an open source software product – is it revenue or is it number of downloads or number of users. How does Jaspersoft do by these counts.
Mike- History has shown that open source software is successful as a “bottoms up” disrupter within IT or the developer market.  Today, many new software projects and startup ventures are birthed on open source software, often initiated with little to no budget. As the organization achieves success with a particular project, the next initiative tends to be larger and more strategic, often displacing what was historically solved with a proprietary solution. These larger deployments strengthen the technology over time.
Thus, the more proven and battle tested an open source solution is, often measured via downloads, deployments, community size, and community activity, usually equates to its long term success. Linux, Tomcat, and MySQL have plenty of statistics to model this lifecycle. This model is no different for open source BI.
The success to date of Jaspersoft is directly tied to its solid proven technology and the vibrancy of the community.  We proudly and openly claim to have the largest BI community with over 14 million downloads, nearly 230,000 registered members, representing over 175,000 production deployments, 14,000 customers, across 100 countries.  Every day, 30,000 developers are using Jaspersoft to build BI applications.  Behind Excel, its hard to imagine a more widely used BI tool in the market.  Jaspersoft could not reach these kind of numbers with crippled or poorly architected software.
Ajay- What are your plans for leveraging cloud computing, mobile and tablet platforms and for making Jaspersoft more easy and global  to use.

Introducing Radoop

Thats Right- This is Radoop and it is

Hadoop meats Rapid Miner=Radoop

 

 

http://prezi.com/bin/preziloader.swf

http://prezi.com/dxx7m50le5hr/radoop-presentation-at-rcomm-2011/

 

Cloud Computing with #Rstats and CloudNumbers.com

Some of you know that I am due to finish “R for Business Analytics” for Springer by Dec 2011 and “R for Cloud Computing” by Dec 2012. Accordingly while I am busy crunching out ” R for Business Analytics” which is a corporate business analyst\s view on using #Rstats, I am gathering material for the cloud computing book too.

I have been waiting for someone like CloudNumbers.com for some time now, and I like their initial pricing structure.  As scale picks up, this should only get better. As a business Intelligence analyst, I wonder if they can help set up a dedicated or private cloud too for someone who wants a data mart solution to be done.The best thing I like about this- they have a referral scheme so if someone you know wants to test it out, well it gives you some freebies too in the form of an invitation code.

 

 

 

 

  • I read the instructions

  • I reviewed the pricing plan and click back to the dashboard 

 

  • I clicked on start new session

  • I click next
  • Choosing R from a very convenient interface design
  • Choosing all the applications I may need
  • This is a really nice feature in enabling to choose packages for R
  • Finally I can choose ONLY 7.5 gb RAM in the free version

I name the session in case I want to start multiple sessions

After waiting 15 minutes, my instance is up and I type R to get the following

Note I can also see the desktop- which is a great improvement over EC2 interface for R Cloud computing on Linux. Also it shuts down on its own if I leave it running (as of now after 180 minutes) so i click shut down session

 

You can click this link to try and get your own cloud in the sky for free -10 hours are free for you

https://my.cloudnumbers.com/register/65E97A

 

Contribution to #Rstats by Revolution

I have been watching for Revolution Analytics product almost since the inception of the company. It has managed to sail over storms, naysayers and critics with simple and effective strategy of launching good software, making good partnerships and keeping up media visibility with white papers, joint webinars, blogs, conferences and events.

However this is a listing of all technical contributions made by Revolution Analytics products to the #rstats project.

1) Useful Packages mostly in parallel processing or more efficient computing like

 

2) RevoScaler package to beat R’s memory problem (this is probably the best in my opinion as it is yet to be replicated by the open source version and is a clear cut reason for going in for the paid version)

http://www.revolutionanalytics.com/products/enterprise-big-data.php

  • Efficient XDF File Format designed to efficiently handle huge data sets.
  • Data Step Functionality to quickly clean, transform, explore, and visualize huge data sets.
  • Data selection functionality to store huge data sets out of memory, and select subsets of rows and columns for in-memory operation with all R functions.
  • Visualize Large Data sets with line plots and histograms.
  • Built-in Statistical Algorithms for direct analysis of huge data sets:
    • Summary Statistics
    • Linear Regression
    • Logistic Regression
    • Crosstabulation
  • On-the-fly data transformations to include derived variables in models without writing new data files.
  • Extend Existing Analyses by writing user- defined R functions to “chunk” through huge data sets.
  • Direct import of fixed-format text data files and SAS data sets into .xdf format

 

3) RevoDeploy R for  API based R solution – I somehow think this feature will get more important as time goes on but it seems a lower visibility offering right now.

http://www.revolutionanalytics.com/products/enterprise-deployment.php

  • Collection of Web services implemented as a RESTful API.
  • JavaScript and Java client libraries, allowing users to easily build custom Web applications on top of R.
  • .NET Client library — includes a COM interoperability to call R from VBA
  • Management Console for securely administrating servers, scripts and users through HTTP and HTTPS.
  • XML and JSON format for data exchange.
  • Built-in security model for authenticated or anonymous invocation of R Scripts.
  • Repository for storing R objects and R Script execution artifacts.

 

4) Revolutions IDE (or Productivity Environment) for a faster coding environment than command line. The GUI by Revolution Analytics is in the works. – Having used this- only the Code Snippets function is a clear differentiator from newer IDE and GUI. The code snippets is awesome though and even someone who doesnt know much R can get analysis set up quite fast and accurately.

http://www.revolutionanalytics.com/products/enterprise-productivity.php

  • Full-featured Visual Debugger for debugging R scripts, with call stack window and step-in, step-over, and step-out capability.
  • Enhanced Script Editor with hover-over help, word completion, find-across-files capability, automatic syntax checking, bookmarks, and navigation buttons.
  • Run Selection, Run to Line and Run to Cursor evaluation
  • R Code Snippets to automatically generate fill-in-the-blank sections of R code with tooltip help.
  • Object Browser showing available data and function objects (including those in packages), with context menus for plotting and editing data.
  • Solution Explorer for organizing, viewing, adding, removing, rearranging, and sourcing R scripts.
  • Customizable Workspace with dockable, floating, and tabbed tool windows.
  • Version Control Plug-in available for the open source Subversion version control software.

 

Marketing contributions from Revolution Analytics-

1) Sponsoring R sessions and user meets

2) Evangelizing R at conferences  and partnering with corporate partners including JasperSoft, Microsoft , IBM and others at http://www.revolutionanalytics.com/partners/

3) Helping with online initiatives like http://www.inside-r.org/ (which is curiously dormant and now largely superseded by R-Bloggers.com) and the syntax highlighting tool at http://www.inside-r.org/pretty-r. In addition Revolution has been proactive in reaching out to the community

4) Helping pioneer blogging about R and Twitter Hash tag discussions , and contributing to Stack Overflow discussions. Within a short while, #rstats online community has overtaken a lot more established names- partly due to decentralized nature of its working.

 

Did I miss something out? yes , they share their code by GPL.

 

Let me know by feedback