Interview James G Kobielus IBM Big Data

Here is an interview with  James G Kobielus, who is the Senior Program Director, Product Marketing, Big Data Analytics Solutions at IBM. Special thanks to Payal Patel Cudia of IBM’s communication team,for helping with the logistics for this.

Ajay -What are the specific parts of the IBM Platform that deal with the three layers of Big Data -variety, velocity and volume

James-Well first of all, let’s talk about the IBM Information Management portfolio. Our big data platform addresses the three layers of big data to varying degrees either together in a product , or two out of the three or even one of the three aspects. We don’t have separate products for the variety, velocity and volume separately.

Let us define these three layers-Volume refers to the hundreds of terabytes and petabytes of stored data inside organizations today. Velocity refers to the whole continuum from batch to real time continuous and streaming data.

Variety refers to multi-structure data from structured to unstructured files, managed and stored in a common platform analyzed through common tooling.

For Volume-IBM has a highly scalable Big Data platform. This includes Netezza and Infosphere groups of products, and Watson-like technologies that can support petabytes volume of data for analytics. But really the support of volume ranges across IBM’s Information Management portfolio both on the database side and the advanced analytics side.

For real time Velocity, we have real time data acquisition. We have a product called IBM Infosphere, part of our Big Data platform, that is specifically built for streaming real time data acquisition and delivery through complex event processing. We have a very rich range of offerings that help clients build a Hadoop environment that can scale.

Our Hadoop platform is the most real time capable of all in the industry. We are differentiated by our sheer breadth, sophistication and functional depth and tooling integrated in our Hadoop platform. We are differentiated by our streaming offering integrated into the Hadoop platform. We also offer a great range of modeling and analysis tools, pretty much more than any other offering in the Big Data space.

Attached- Jim’s slides from Hadoop World

Ajay- Any plans for Mahout for Hadoop

Jim- I cant speak about product plans. We have plans but I cant tell you anything more. We do have a feature in Big Insights called System ML, a library for machine learning.

Ajay- How integral are acquisitions for IBM in the Big Data space (Netezza,Cognos,SPSS etc). Is it true that everything that you have in Big Data is acquired or is the famous IBM R and D contributing here . (see a partial list of IBM acquisitions at at http://www.ibm.com/investor/strategy/acquisitions.wss )

Jim- We have developed a lot on our own. We have the deepest R and D of anybody in the industry in all things Big Data.

For example – Watson has Big Insights Hadoop at its core. Apache Hadoop is the heart and soul of Big Data (see http://www-01.ibm.com/software/data/infosphere/hadoop/ ). A great deal that makes Big Insights so differentiated is that not everything that has been built has been built by the Hadoop community.

We have built additions out of the necessity for security, modeling, monitoring, and governance capabilities into BigInsights to make it truly enterprise ready. That is one example of where we have leveraged open source and we have built our own tools and technologies and layered them on top of the open source code.

Yes of course we have done many strategic acquisitions over the last several years related to Big Data Management and we continue to do so. This quarter we have done 3 acquisitions with strong relevance to Big Data. One of them is Vivisimo (http://www-03.ibm.com/press/us/en/pressrelease/37491.wss ).

Vivisimo provides federated Big Data discovery, search and profiling capabilities to help you figure out what data is out there,what is relevance of that data to your data science project- to help you answer the question which data should you bring in your Hadoop Cluster.

 We also did Varicent , which is more performance management and we did TeaLeaf , which is a customer experience solution provider where customer experience management and optimization is one of the hot killer apps for Hadoop in the cloud. We have done great many acquisitions that have a clear relevance to Big Data.

Netezza already had a massively parallel analytics database product with an embedded library of models called Netezza Analytics, and in-database capabilties to massively parallelize Map Reduce and other analytics management functions inside the database. In many ways, Netezza provided capabilities similar to that IBM had provided for many years under the Smart Analytics Platform (http://www-01.ibm.com/software/data/infosphere/what-is-advanced-analytics/ ) .

There is a differential between Netezza and ISAS.

ISAS was built predominantly in-house over several years . If you go back a decade ago IBM acquired Ascential Software , a product portfolio that was the heart and soul of IBM InfoSphere Information Manager that is core to our big Data platform. In addition to Netezza, IBM bought SPSS two years back. We already had data mining tools and predictive modeling in the InfoSphere portfolio, but we realized we needed to have the best of breed, SPSS provided that and so IBM acquired them.

 Cognos– We had some BI reporting capabilities in the InfoSphere portfolio that we had built ourselves and also acquired for various degrees from prior acquisitions. But clearly Cognos was one of the best BI vendors , and we were lacking such a rich tool set in our product in visualization and cubing and so for that reason we acquired Cognos.

There is also Unica – which is a marketing campaign optimization which in many ways is a killer app for Hadoop. Projects like that are driving many enterprises.

Ajay- How would you rank order these acquisitions in terms of strategic importance rather than data of acquisition or price paid.

Jim-Think of Big Data as an ecosystem that has components that are fitted to particular functions for data analytics and data management. Is the database the core, or the modeling tool the core, or the governance tools the core, or is the hardware platform the core. Everything is critically important. We would love to hear from you what you think have been most important. Each acquisition has helped play a critical role to build the deepest and broadest solution offering in Big Data. We offer the hardware, software, professional services, the hosting service. I don’t think there is any validity to a rank order system.

Ajay-What are the initiatives regarding open source that Big Data group have done or are planning?

Jim- What we are doing now- We are very much involved with the Apache Hadoop community. We continue to evolve the open source code that everyone leverages.. We have built BigInsights on Apache Hadoop. We have the closest, most up to date in terms of version number to Apache Hadoop ( Hbase,HDFS, Pig etc) of all commercial distributions with our BigInsights 1.4 .

We have an R library integrated with BigInsights . We have a R library integrated with Netezza Analytics. There is support for R Models within the SPSS portfolio. We already have a fair amount of support for R across the portfolio.

Ajay- What are some of the concerns (privacy,security,regulation) that you think can dampen the promise of Big Data.

Jim- There are no showstoppers, there is really a strong momentum. Some of the concerns within the Hadoop space are immaturity of the technology, the immaturity of some of the commercial offerings out there that implement Hadoop, the lack of standardization for formal sense for Hadoop.

There is no Open Standards Body that declares, ratifies the latest version of Mahout, Map Reduce, HDFS etc. There is no industry consensus reference framework for layering these different sub projects. There are no open APIs. There are no certifications or interoperability standards or organizations to certify different vendors interoperability around a common API or framework.

The lack of standardization is troubling in this whole market. That creates risks for users because users are adopting multiple Hadoop products. There are lots of Hadoop deployments in the corporate world built around Apache Hadoop (purely open source). There may be no assurance that these multiple platforms will interoperate seamlessly. That’s a huge issue in terms of just magnifying the risk. And it increases the need for the end user to develop their own custom integrated code if they want to move data between platforms, or move map-reduce jobs between multiple distributions.

Also governance is a consideration. Right now Hadoop is used for high volume ETL on multi structured and unstructured data sources, or Hadoop is used for exploratory sand boxes for data scientists. These are important applications that are a majority of the Hadoop deployments . Some Hadoop deployments are stand alone unstructured data marts for specific applications like sentiment analysis like.

Hadoop is not yet ready for data warehousing. We don’t see a lot of Hadoop being used as an alternative to data warehouses for managing the single version of truth of system or record data. That day will come but there needs to be out there in the marketplace a broader range of data governance mechanisms , master data management, data profiling products that are mature that enterprises can use to make sure their data inside their Hadoop clusters is clean and is the single version of truth. That day has not arrived yet.

One of the great things about IBM’s acquisition of Vivisimo is that a piece of that overall governance picture is discovery and profiling for unstructured data , and that is done very well by Vivisimo for several years.

What we will see is vendors such as IBM will continue to evolve security features inside of our Hadoop platform. We will beef up our data governance capabilities for this new world of Hadoop as the core of Big Data, and we will continue to build up our ability to integrate multiple databases in our Hadoop platform so that customers can use data from a bit of Hadoop,some data from a bit of traditional relational data warehouse, maybe some noSQL technology for different roles within a very complex Big Data environment.

That latter hybrid deployment model is becoming standard across many enterprises for Big Data. A cause for concern is when your Big Data deployment has a bit of Hadoop, bit of noSQL, bit of EDW, bit of in-memory , there are no open standards or frameworks for putting it all together for a unified framework not just for interoperability but also for deployment.

There needs to be a virtualization or abstraction layer for unified access to all these different Big Data platforms by the users/developers writing the queries, by administrators so they can manage data and resources and jobs across all these disparate platforms in a seamless unified way with visual tooling. That grand scenario, the virtualization layer is not there yet in any standard way across the big data market. It will evolve, it may take 5-10 years to evolve but it will evolve.

So, that’s the concern that can dampen some of the enthusiasm for Big Data Analytics.

About-

You can read more about Jim at http://www.linkedin.com/pub/james-kobielus/6/ab2/8b0 or

follow him on Twitter at http://twitter.com/jameskobielus

You can read more about IBM Big Data at http://www-01.ibm.com/software/data/bigdata/

Nice BI Tutorials

Tutorials screenshot.
Image via Wikipedia

Here is a set of very nice, screenshot enabled tutorials from SAP BI. They are a bit outdated (3 years old) but most of it is quite relevant- especially from a Tutorial Design Perspective –

Most people would rather see screenshot based step by step powerpoints, than cluttered or clever presentations , or even videos that force you to sit like a TV zombie. Unfortunately most tutorial presentations I see especially for BI are either slides with one or two points, that abruptly shift to “concepts” or videos that are atleast more than 10 minutes long. That works fine for scripting tutorials or hands on workshops, but cannot be reproduced for later instances of study.

The mode of tutorials especially for GUI software can vary, it may be Slideshare, Scribd, Google Presentation,Microsoft Powerpoint but a step by step screenshot by screenshot tutorial is much better for understanding than commando line jargon/ Youtub   Videos presentations, or Powerpoint with Points.

Have a look at these SAP BI 7 slideshares

and

Speaking of BI, the R Package called Brew is going to brew up something special especially combined with R Apache. However I wish R Apache, or R Web, or RServe had step by step install screenshot tutorials to increase their usage in Business Intelligence.

I tried searching for JMP GUI Tutorials too, but I believe putting all your content behind a registration wall is not so great. Do a Pareto Analysis of your training material, surely you can share a couple more tutorials without registration. It also will help new wanna-migrate users to get a test and feel for the installation complexities as well as final report GUI.

 

IBM Business Analytics Forum

IBM Cognos is about to be launced next month, and Cognos Forum and SPSS Directions have merged to form Business Analytics Forum.

Cognos and SPSS bundled together is a formidable software package for business analysts.

See http://www-01.ibm.com/software/data/2010-conference/business-analytics/

KXEN Update

Update from a very good data mining software company, KXEN –

  1. Longtime Chairman and founder Roger Haddad is retiring but would be a Board Member. See his interview with Decisionstats here https://decisionstats.wordpress.com/2009/01/05/interview-roger-haddad-founder-of-kxen-automated-modeling-software/ (note images were hidden due to migration from .com to .wordpress.com )
  2. New Members of Leadership are as-
John Ball, CEOJohn Ball
Chief Executive Officer

John Ball brings 20 years of experience in enterprise software, deep expertise in business intelligence and CRM applications, and a proven track record of success driving rapid growth at highly innovative companies.

Prior to joining KXEN, Mr. Ball served in several executive roles at salesforce.com, the leading provider of SaaS applications. Most recently, John served as VP & General Manager, Analytics and Reporting Products, where he spearheaded salesforce.com’s foray into CRM analytics and business intelligence. John also served as VP & General Manager, Service and Support Applications at salesforce.com, where he successfully grew the business to become the second largest and fastest growing product line at salesforce.com. Before salesforce.com, Ball was founder and CEO of Netonomy, the leading provider of customer self-service solutions for the telecommunications industry. Ball also held a number of executive roles at Business Objects, including General Manager, Web Products, where delivered to market the first 3 versions of WebIntelligence. Ball has a master’s degree in electrical engineering from Georgia Tech and a master’s degree in electric

I hope John atleast helps build a KXEN Force.com application- there are only 2 data mining apps there on App Exchange. Also on the wish list  more social media presence, a Web SaaS/Amazon API for KXEN, greater presence in American/Asian conferences, and a solution for SME’s (which cannot afford the premium pricing of the flagship solution. An alliance with bigger BI vendors like Oracle, SAP or IBM  for selling the great social network analysis.

Bill Russell as Non Executive Chairman-

Bill Russell as Non-executive Chairman of the Board, effective July 16 2010. Russell has 30 years of operational experience in enterprise software, with a special focus on business intelligence, analytics, and databases.Russell held a number of senior-level positions in his more than 20 years at Hewlett-Packard, including Vice President and General Manager of the multi-billion dollar Enterprise Systems Group. He has served as Non-executive Chairman of the Board for Sylantro Systems Corporation, webMethods Inc., and Network Physics, Inc. and has served as a board director for Cognos Inc. In addition to KXEN, Russell currently serves on the boards of Saba, PROS Holdings Inc., Global 360, ParAccel Inc., and B.T. Mancini Company.

Xavier Haffreingue as senior vice president, worldwide professional services and solutions.
He has almost 20 years of international enterprise software experience gained in the CRM, BI, Web and database sectors. Haffreingue joins KXEN from software provider Axway where he was VP global support operations. Prior to Axway, he held various leadership roles in the software industry, including VP self service solutions at Comverse Technologies and VP professional services and support at Netonomy, where he successfully delivered multi-million dollar projects across Europe, Asia-Pacific and Africa. Before that he was with Business Objects and Sybase, where he ran support and services in southern Europe managing over 2,500 customers in more than 20 countries.

David Guercio  as senior vice president, Americas field operations. Guercio brings to the role more than 25 years experience of building and managing high-achieving sales teams in the data mining, business intelligence and CRM markets. Guercio comes to KXEN from product lifecycle management vendor Centric Software, where he was EVP sales and client services. Prior to Centric, he was SVP worldwide sales and client services at Inxight Software, where he was also Chairman and CEO of the company’s Federal Systems Group, a subsidiary of Inxight that saw success in the US Federal Government intelligence market. The success in sales growth and penetration into the federal government led to the acquisition of Inxight by Business Objects in 2007, where Guercio then led the Inxight sales organization until Business Objects was acquired by SAP. Guercio was also a key member of the management team and a co-founder at Neovista, an early pioneer in data mining and predictive analytics. Additionally, he held the positions of director of sales and VP of professional services at Metaphor Computer Systems, one of the first data extraction solutions companies, which was acquired by IBM. During his career, Guercio also held executive positions at Resonate and SiGen.

3) Venture Capital funding to fund expansion-

It has closed $8 million in series D funding to further accelerate its growth and international expansion. The round was led by NextStage and included participation from existing investors XAnge Capital, Sofinnova Ventures, Saints Capital and Motorola Ventures.

This was done after John Ball had joined as CEO.

4) Continued kudos from analysts and customers for it’s technical excellence.

KXEN was named a leader in predictive analytics and data mining by Forrester Research (1) and was rated highest for commercial deployments of social network analytics by Frost & Sullivan (2)

Also it became an alliance partner of Accenture- which is also a prominent SAS partner as well.

In Database Optimization-

In KXEN V5.1, a new data manipulation module (ADM) is provided in conjunction with scoring to optimize database workloads and provide full in-database model deployment. Some leading data mining vendors are only now beginning to offer this kind of functionality, and then with only one or two selected databases, giving KXEN a more than five-year head start. Some other vendors are only offering generic SQL generation, not optimized for each database, and do not provide the wealth of possible outputs for their scoring equations: For example, real operational applications require not only to generate scores, but decision probabilities, error bars, individual input contributions – used to derive reasons of decision and more, which are available in KXEN in-database scoring modules.

Since 2005, KXEN has leveraged databases as the data manipulation engine for analytical dataset generation. In 2008, the ADM (Analytical Data Management) module delivered a major enhancement by providing a very easy to use data manipulation environment with unmatched productivity and efficiency. ADM works as a generator of optimized database-specific SQL code and comes with an integrated layer for the management of meta-data for analytics.

KXEN Modeling Factory- (similar to SAS’s recent product Rapid Predictive Modeler http://www.sas.com/resources/product-brief/rapid-predictive-modeler-brief.pdf and http://jtonedm.com/2010/09/02/first-look-rapid-predictive-modeler/)

KXEN Modeling Factory (KMF) has been designed to automate the development and maintenance of predictive analytics-intensive systems, especially systems that include large numbers of models, vast amounts of data or require frequent model refreshes. Information about each project and model is monitored and disseminated to ensure complete management and oversight and to facilitate continual improvement in business performance.

Main Functions

Schedule: creation of the Analytic Data Set (ADS), setup of how and when to score, setup of when and how to perform model retraining and refreshes …

Report
: Monitormodel execution over time, Track changes in model quality over time, see how useful one variable is by considering its multiple instance in models …

Notification
: Rather than having to wade through pages of event logs, KMF Department allows users to manage by exception through notifications.

Other products from KXEN have been covered here before https://decisionstats.wordpress.com/tag/kxen/ , including Structural Risk Minimization- https://decisionstats.wordpress.com/2009/04/27/kxen-automated-regression-modeling/

Thats all for the KXEN update- all the best to the new management team and a splendid job done by Roger Haddad in creating what is France and Europe’s best known data mining company.

Note- Source – http://www.kxen.com


Towards better analytical software

Here are some thoughts on using existing statistical software for better analytics and/or business intelligence (reporting)-

1) User Interface Design Matters- Most stats software have a legacy approach to user interface design. While the Graphical User Interfaces need to more business friendly and user friendly- example you can call a button T Test or You can call it Compare > Means of Samples (with a highlight called T Test). You can call a button Chi Square Test or Call it Compare> Counts Data. Also excessive reliance on drop down ignores the next generation advances in OS- namely touchscreen instead of mouse click and point.

Given the fact that base statistical procedures are the same across softwares, a more thoughtfully designed user interface (or revamped interface) can give softwares an edge over legacy designs.

2) Branding of Software Matters- One notable whine against SAS Institite products is a premier price. But really that software is actually inexpensive if you see other reporting software. What separates a Cognos from a Crystal Reports to a SAS BI is often branding (and user interface design). This plays a role in branding events – social media is often the least expensive branding and marketing channel. Same for WPS and Revolution Analytics.

3) Alliances matter- The alliances of parent companies are reflected in the sales of bundled software. For a complete solution , you need a database plus reporting plus analytical software. If you are not making all three of the above, you need to partner and cross sell. Technically this means that software (either DB, or Reporting or Analytics) needs to talk to as many different kinds of other softwares and formats. This is why ODBC in R is important, and alliances for small companies like Revolution Analytics, WPS and Netezza are just as important as bigger companies like IBM SPSS, SAS Institute or SAP. Also tie-ins with Hadoop (like R and Netezza appliance)  or  Teradata and SAS help create better usage.

4) Cloud Computing Interfaces could be the edge- Maybe cloud computing is all hot air. Prudent business planing demands that any software maker in analytics or business intelligence have an extremely easy to load interface ( whether it is a dedicated on demand website) or an Amazon EC2 image. Easier interfaces win and with the cloud still in early stages can help create an early lead. For R software makers this is critical since R is bad in PC usage for larger sets of data in comparison to counterparts. On the cloud that disadvantage vanishes. An easy to understand cloud interface framework is here ( its 2 years old but still should be okay) http://knol.google.com/k/data-mining-through-cloud-computing#

5) Platforms matter- Softwares should either natively embrace all possible platforms or bundle in middle ware themselves.

Here is a case study SAS stopped supporting Apple OS after Base SAS 7. Today Apple OS is strong  ( 3.47 million Macs during the most recent quarter ) and the only way to use SAS on a Mac is to do either

http://goo.gl/QAs2

or do a install of Ubuntu on the Mac ( https://help.ubuntu.com/community/MacBook ) and do this

http://ubuntuforums.org/showthread.php?t=1494027

Why does this matter? Well SAS is free to academics and students  from this year, but Mac is a preferred computer there. Well WPS can be run straight away on the Mac (though they are curiously not been able to provide academics or discounted student copies 😉 ) as per

http://goo.gl/aVKu

Does this give a disadvantage based on platform. Yes. However JMP continues to be supported on Mac. This is also noteworthy given the upcoming Chromium OS by Google, Windows Azure platform for cloud computing.

Certifications in Analytics and Business Intelligence

I sometimes get a chat message on Twitter/ Facebook asking for help on some specific data issue. More often than not it is something like – How do I get started in BI/BA /Data stuff. So here is a list of certifications which I think are quite nice as beginning points or even CV multipliers.

[tweetmeme=”Decisionstats”]

1) Google’s Certifications

http://www.google.com/intl/en/adwords/professionals/

2) SAS Certifications

Quite well established and easily one of the best structured certification programs in the industry.

http://support.sas.com/certify/index.html

3) SPSS

The SPSS certification began last year and it helps provide a valuable skill set for both your practice as well as your resume. Also useful to have a second skill set apart from SAS in terms of statistical software.

http://www.spss.com/certification/

At this point I would like you to pause and think if the above certifications are useful or cost  effective for you as they are broadly general qualifications in statistical platforms as well as in applying them for the web analytics ( a key area for business analytics).

For more specialized certifications here are some more-

1) Microsoft SQL Server

http://www.microsoft.com/learning/en/us/certification/cert-sql-server.aspx

2) TDWI Certification

http://tdwi.org/pages/certification/index.aspx

3) IBM

Not sure how updated these are so caveat emptor!

http://www.redbooks.ibm.com/abstracts/sg245747.html

If you are knowledgeable about IBM’s Business Intelligence solutions and the fundamental concepts of DB2 Universal Database, and you are capable of performing the intermediate and advanced skills required to design, develop, and support Business Intelligence applications

Also IBM Cognos Certifications

http://www-01.ibm.com/software/data/education/cognos-cert.html

4) MicroStrategy

http://www.microstrategy.com/education/Certification/

5) Oracle

Included the all new Sun Certifications as well.

http://certification.oracle.com/

and http://blogs.oracle.com/certification/

6) SAP Certifications

http://www.sap.com/services/education/certification/index.epx

7) Cloudera’s Hadoop Certification

http://www.cloudera.com/developers/learn-hadoop/hadoop-certification/

These are some Business Intelligence and Business Analytics related certifications that I assembled in a list. Many other programs were either too software development specific or did not have a certification for general usage (like many R trainings or company tool specific trainings). Please feel free to add in any suggestions.

%d bloggers like this: