Interview James G Kobielus IBM Big Data

Here is an interview with  James G Kobielus, who is the Senior Program Director, Product Marketing, Big Data Analytics Solutions at IBM. Special thanks to Payal Patel Cudia of IBM’s communication team,for helping with the logistics for this.

Ajay -What are the specific parts of the IBM Platform that deal with the three layers of Big Data -variety, velocity and volume

James-Well first of all, let’s talk about the IBM Information Management portfolio. Our big data platform addresses the three layers of big data to varying degrees either together in a product , or two out of the three or even one of the three aspects. We don’t have separate products for the variety, velocity and volume separately.

Let us define these three layers-Volume refers to the hundreds of terabytes and petabytes of stored data inside organizations today. Velocity refers to the whole continuum from batch to real time continuous and streaming data.

Variety refers to multi-structure data from structured to unstructured files, managed and stored in a common platform analyzed through common tooling.

For Volume-IBM has a highly scalable Big Data platform. This includes Netezza and Infosphere groups of products, and Watson-like technologies that can support petabytes volume of data for analytics. But really the support of volume ranges across IBM’s Information Management portfolio both on the database side and the advanced analytics side.

For real time Velocity, we have real time data acquisition. We have a product called IBM Infosphere, part of our Big Data platform, that is specifically built for streaming real time data acquisition and delivery through complex event processing. We have a very rich range of offerings that help clients build a Hadoop environment that can scale.

Our Hadoop platform is the most real time capable of all in the industry. We are differentiated by our sheer breadth, sophistication and functional depth and tooling integrated in our Hadoop platform. We are differentiated by our streaming offering integrated into the Hadoop platform. We also offer a great range of modeling and analysis tools, pretty much more than any other offering in the Big Data space.

Attached- Jim’s slides from Hadoop World

Ajay- Any plans for Mahout for Hadoop

Jim- I cant speak about product plans. We have plans but I cant tell you anything more. We do have a feature in Big Insights called System ML, a library for machine learning.

Ajay- How integral are acquisitions for IBM in the Big Data space (Netezza,Cognos,SPSS etc). Is it true that everything that you have in Big Data is acquired or is the famous IBM R and D contributing here . (see a partial list of IBM acquisitions at at http://www.ibm.com/investor/strategy/acquisitions.wss )

Jim- We have developed a lot on our own. We have the deepest R and D of anybody in the industry in all things Big Data.

For example – Watson has Big Insights Hadoop at its core. Apache Hadoop is the heart and soul of Big Data (see http://www-01.ibm.com/software/data/infosphere/hadoop/ ). A great deal that makes Big Insights so differentiated is that not everything that has been built has been built by the Hadoop community.

We have built additions out of the necessity for security, modeling, monitoring, and governance capabilities into BigInsights to make it truly enterprise ready. That is one example of where we have leveraged open source and we have built our own tools and technologies and layered them on top of the open source code.

Yes of course we have done many strategic acquisitions over the last several years related to Big Data Management and we continue to do so. This quarter we have done 3 acquisitions with strong relevance to Big Data. One of them is Vivisimo (http://www-03.ibm.com/press/us/en/pressrelease/37491.wss ).

Vivisimo provides federated Big Data discovery, search and profiling capabilities to help you figure out what data is out there,what is relevance of that data to your data science project- to help you answer the question which data should you bring in your Hadoop Cluster.

 We also did Varicent , which is more performance management and we did TeaLeaf , which is a customer experience solution provider where customer experience management and optimization is one of the hot killer apps for Hadoop in the cloud. We have done great many acquisitions that have a clear relevance to Big Data.

Netezza already had a massively parallel analytics database product with an embedded library of models called Netezza Analytics, and in-database capabilties to massively parallelize Map Reduce and other analytics management functions inside the database. In many ways, Netezza provided capabilities similar to that IBM had provided for many years under the Smart Analytics Platform (http://www-01.ibm.com/software/data/infosphere/what-is-advanced-analytics/ ) .

There is a differential between Netezza and ISAS.

ISAS was built predominantly in-house over several years . If you go back a decade ago IBM acquired Ascential Software , a product portfolio that was the heart and soul of IBM InfoSphere Information Manager that is core to our big Data platform. In addition to Netezza, IBM bought SPSS two years back. We already had data mining tools and predictive modeling in the InfoSphere portfolio, but we realized we needed to have the best of breed, SPSS provided that and so IBM acquired them.

 Cognos– We had some BI reporting capabilities in the InfoSphere portfolio that we had built ourselves and also acquired for various degrees from prior acquisitions. But clearly Cognos was one of the best BI vendors , and we were lacking such a rich tool set in our product in visualization and cubing and so for that reason we acquired Cognos.

There is also Unica – which is a marketing campaign optimization which in many ways is a killer app for Hadoop. Projects like that are driving many enterprises.

Ajay- How would you rank order these acquisitions in terms of strategic importance rather than data of acquisition or price paid.

Jim-Think of Big Data as an ecosystem that has components that are fitted to particular functions for data analytics and data management. Is the database the core, or the modeling tool the core, or the governance tools the core, or is the hardware platform the core. Everything is critically important. We would love to hear from you what you think have been most important. Each acquisition has helped play a critical role to build the deepest and broadest solution offering in Big Data. We offer the hardware, software, professional services, the hosting service. I don’t think there is any validity to a rank order system.

Ajay-What are the initiatives regarding open source that Big Data group have done or are planning?

Jim- What we are doing now- We are very much involved with the Apache Hadoop community. We continue to evolve the open source code that everyone leverages.. We have built BigInsights on Apache Hadoop. We have the closest, most up to date in terms of version number to Apache Hadoop ( Hbase,HDFS, Pig etc) of all commercial distributions with our BigInsights 1.4 .

We have an R library integrated with BigInsights . We have a R library integrated with Netezza Analytics. There is support for R Models within the SPSS portfolio. We already have a fair amount of support for R across the portfolio.

Ajay- What are some of the concerns (privacy,security,regulation) that you think can dampen the promise of Big Data.

Jim- There are no showstoppers, there is really a strong momentum. Some of the concerns within the Hadoop space are immaturity of the technology, the immaturity of some of the commercial offerings out there that implement Hadoop, the lack of standardization for formal sense for Hadoop.

There is no Open Standards Body that declares, ratifies the latest version of Mahout, Map Reduce, HDFS etc. There is no industry consensus reference framework for layering these different sub projects. There are no open APIs. There are no certifications or interoperability standards or organizations to certify different vendors interoperability around a common API or framework.

The lack of standardization is troubling in this whole market. That creates risks for users because users are adopting multiple Hadoop products. There are lots of Hadoop deployments in the corporate world built around Apache Hadoop (purely open source). There may be no assurance that these multiple platforms will interoperate seamlessly. That’s a huge issue in terms of just magnifying the risk. And it increases the need for the end user to develop their own custom integrated code if they want to move data between platforms, or move map-reduce jobs between multiple distributions.

Also governance is a consideration. Right now Hadoop is used for high volume ETL on multi structured and unstructured data sources, or Hadoop is used for exploratory sand boxes for data scientists. These are important applications that are a majority of the Hadoop deployments . Some Hadoop deployments are stand alone unstructured data marts for specific applications like sentiment analysis like.

Hadoop is not yet ready for data warehousing. We don’t see a lot of Hadoop being used as an alternative to data warehouses for managing the single version of truth of system or record data. That day will come but there needs to be out there in the marketplace a broader range of data governance mechanisms , master data management, data profiling products that are mature that enterprises can use to make sure their data inside their Hadoop clusters is clean and is the single version of truth. That day has not arrived yet.

One of the great things about IBM’s acquisition of Vivisimo is that a piece of that overall governance picture is discovery and profiling for unstructured data , and that is done very well by Vivisimo for several years.

What we will see is vendors such as IBM will continue to evolve security features inside of our Hadoop platform. We will beef up our data governance capabilities for this new world of Hadoop as the core of Big Data, and we will continue to build up our ability to integrate multiple databases in our Hadoop platform so that customers can use data from a bit of Hadoop,some data from a bit of traditional relational data warehouse, maybe some noSQL technology for different roles within a very complex Big Data environment.

That latter hybrid deployment model is becoming standard across many enterprises for Big Data. A cause for concern is when your Big Data deployment has a bit of Hadoop, bit of noSQL, bit of EDW, bit of in-memory , there are no open standards or frameworks for putting it all together for a unified framework not just for interoperability but also for deployment.

There needs to be a virtualization or abstraction layer for unified access to all these different Big Data platforms by the users/developers writing the queries, by administrators so they can manage data and resources and jobs across all these disparate platforms in a seamless unified way with visual tooling. That grand scenario, the virtualization layer is not there yet in any standard way across the big data market. It will evolve, it may take 5-10 years to evolve but it will evolve.

So, that’s the concern that can dampen some of the enthusiasm for Big Data Analytics.

About-

You can read more about Jim at http://www.linkedin.com/pub/james-kobielus/6/ab2/8b0 or

follow him on Twitter at http://twitter.com/jameskobielus

You can read more about IBM Big Data at http://www-01.ibm.com/software/data/bigdata/

Some Ways Anonymous Could Disrupt the Internet if SOPA is passed

This is a piece of science fiction. I wrote while reading Isaac Assimov’s advice to writers in GOLD, while on a beach in Anjuna.

1) Identify senators, lobbyists, senior executives of companies advocating for SOPA. Go for selective targeting of these people than massive Denial of Service Attacks.

This could also include election fund raising websites in the United States.

2) Create hacking tools with simple interfaces to probe commonly known software errors, to enable wider audience including the Occupy Movement students to participate in hacking. thus making hacking more democratic. What are the top 25 errors as per  http://cwe.mitre.org/cwss/

http://www.decisionstats.com/top-25-most-dangerous-software-errors/ ?

 

Easy interface tools to check vulnerabilities would be the next generation to flooding tools like HOIC, LOIC – Massive DDOS atttacks make good press coverage but not so good technically

3) Disrupt digital payment mechanisms for selected targets (in step1) using tools developed in Step 2, and introduce random noise errors in payment transfers.

4) Help create a better secure internet by embedding Tor within Chromium with all tools for anonymity embedded for easy usage – a more secure peer to peer browser (like a mashup of Opera , tor and chromium).

or maybe embed bit torrents within a browser.

5) Disrupt media companies and cloud computing based companies like iTunes, Spotify or Google Music, just like virus, ant i viruses disrupted the desktop model of computing. After that offer solutions to the problems like companies of anti virus software did for decades.

6) Hacking websites is fine fun, but hacking internet databases and massively parallel data scrapers can help disrupt some of the status quo.

This applies to databases that offer data for sale, like credit bureaus etc. Making this kind of data public will eliminate data middlemen.

7) Use cross border, cross country regulatory arbitrage for better risk control of hacker attacks.

8) recruiting among universities using easy to use hacking tools to expand the pool of dedicated hacker armies.

9) using operations like those targeting child pornography to increase political acceptability of the hacker sub culture. Refrain from overtly negative and unimaginative bad Press Relations

10) If you cant convince  them to pass SOPA, confuse them 😉 Use bots for random clicks on ads to confuse internet commerce.

 

AsterData still alive;/launches SQL-MapReduce Developer Portal

so apparantly ole client AsterData continues to thrive under gentle touch of Terrific Data

———————————————————————————————————————————————————

Aster Data today launched the SQL-MapReduce Developer Portal, a new online community for data scientists and analytic developers. For your convenience, I copied the release below and it can also be found here. Please let me know if you have any questions or if there is anything else I can help you with.

Sara Korolevich

Point Communications Group for Aster Data

sarak@pointcgroup.com

Office: 602.279.1137

Mobile: 623.326.0881

Teradata Accelerates Big Data Analytics with First Collaborative Community for SQL-MapReduce®

New online community for data scientists and analytic developers enables development and sharing of powerful MapReduce analytics


San Carlos, California – Teradata Corporation (NYSE:TDC) today announced the launch of the Aster Data SQL-MapReduce® Developer Portal. This portal is the first collaborative online developer community for SQL-MapReduce analytics, an emerging framework for processing non-relational data and ultra-fast analytics.

“Aster Data continues to deliver on its unique vision for powerful analytics with a rich set of tools to make development of those analytics quick and easy,” said Tasso Argyros, vice president of Aster Data Marketing and Product Management, Teradata Corporation. “This new developer portal builds on Aster Data’s continuing SQL-MapReduce innovation, leveraging the flexibility and power of SQL-MapReduce for analytics that were previously impossible or impractical.”

The developer portal showcases the power and flexibility of Aster Data’s SQL-MapReduce – which uniquely combines standard SQL with the popular MapReduce distributed computing technology for processing big data – by providing a collaborative community for sharing SQL-MapReduce expert insights in addition to sharing SQL-MapReduce analytic functions and sample code. Data scientists, quantitative analysts, and developers can now leverage the experience, knowledge, and best practices of a community of experts to easily harness the power of SQL-MapReduce for big data analytics.

A recent report from IDC Research, “Taking Care of Your Quants: Focusing Data Warehousing Resources on Quantitative Analysts Matters,” has shown that by enabling data scientists with the tools to harness emerging types and sources of data, companies create significant competitive advantage and become leaders in their respective industry.

“The biggest positive differences among leaders and the rest come from the introduction of new types of data,” says Dan Vesset, program vice president, Business Analytics Solutions, IDC Research. “This may include either new transactional data sources or new external data feeds of transactional or multi-structured interactional data — the latter may include click stream or other data that is a by-product of social networking.”

Vesset goes on to say, “Aster Data provides a comprehensive platform for analytics and their SQL-MapReduce Developer Portal provides a community for sharing best practices and functions which can have an even greater impact to an organization’s business.”

With this announcement Aster Data extends its industry leadership in delivering the most comprehensive analytic platform for big data analytics — not only capable of processing massive volumes of multi-structured data, but also providing an extensive set of tools and capabilities that make it simple to leverage the power of MapReduce analytics. The Aster Data

SQL-MapReduce Developer Portal brings the power of SQL-MapReduce accessible to data scientists, quantitative analysis, and analytic developers by making it easy to share and collaborate with experts in developing SQL-MapReduce analytics. This portal builds on Aster Data’s history of SQL-MapReduce innovations, including:

  • The first deep integration of SQL with MapReduce
  • The first MapReduce support for .NET
  • The first integrated development environment, Aster Data
    Developer Express
  • A comprehensive suite of analytic functions, Aster Data
    Analytic Foundation

Aster Data’s patent-pending SQL-MapReduce enables analytic applications and functions that can deliver faster, deeper insights on terabytes to petabytes of data. These applications are implemented using MapReduce but delivered through standard SQL and business intelligence (BI) tools.

SQL-MapReduce makes it possible for data scientists and developers to empower business analysts with the ability to make informed decisions, incorporating vast amounts of data, regardless of query complexity or data type. Aster Data customers are using SQL-MapReduce for rich analytics including analytic applications for social network analysis, digital marketing optimization, and on-the-fly fraud detection and prevention.

“Collaboration is at the core of our success as one of the leading providers, and pioneers of social software,” said Navdeep Alam, director of Data Architecture at Mzinga. “We are pleased to be one of the early members of The Aster Data SQL-MapReduce Developer Portal, which will allow us the ability to share and leverage insights with others in using big data analytics to attain a deeper understanding of customers’ behavior and create competitive advantage for our business.”

SQL-MapReduce is one of the core capabilities within Aster Data’s flagship product. Aster DatanCluster™ 4.6, the industry’s first massively parallel processing (MPP) analytic platform has an integrated analytics engine that stores and processes both relational and non-relational data at scale. With Aster Data’s unique analytics framework that supports both SQL and
SQL-MapReduce™, customers benefit from rich, new analytics on large data volumes with complex data types. Aster Data analytic functions are embedded within the analytic platform and processed locally with data, which allows for faster data exploration. The SQL-MapReduce framework provides scalable fault-tolerance for new analytics, providing users with superior reliability, regardless of number of users, query size, or data types.


About Aster Data
Aster Data is a market leader in big data analytics, enabling the powerful combination of cost-effective storage and ultra-fast analysis of new sources and types of data. The Aster Data nCluster analytic platform is a massively parallel software solution that embeds MapReduce analytic processing with data stores for deeper insights on new data sources and types to deliver new analytic capabilities with breakthrough performance and scalability. Aster Data’s solution utilizes Aster Data’s patent-pending SQL-MapReduce to parallelize processing of data and applications and deliver rich analytic insights at scale. Companies including Barnes & Noble, Intuit, LinkedIn, Akamai, and MySpace use Aster Data to deliver applications such as digital marketing optimization, social network and relationship analysis, and fraud detection and prevention.


About Teradata
Teradata is the world’s leader in data warehousing and integrated marketing management through itsdatabase softwaredata warehouse appliances, and enterprise analytics. For more information, visitteradata.com.

# # #

Teradata is a trademark or registered trademark of Teradata Corporation in the United States and other countries.

PMML Plugin for Greenplum now available

Predictive Model Markup Language
Image via Wikipedia

From a press release from Zementis.

 

, the Universal PMML Plug-in for in-database scoring. Available now for the EMC Greenplum Database, a high-performance massively parallel processing (MPP) database, the plug-in leverages the Predictive Model Markup Language (PMML) to execute predictive models directly within EMC Greenplum, for highly optimized in-database scoring.

Universal PMML Plug-in

Developed by the Data Mining Group (DMG), PMML is supported by all major data mining vendors, e.g., IBM SPSS, SAS, Teradata, FICO, STASTICA, Microstrategy, TIBCO and Revolution Analytics as well as open source tools like R, KNIME and RapidMiner. With PMML, models built in any of these data mining tools can now instantly be deployed in the EMC Greenplum database. The net result is the ability to leverage the power of standards-based predictive analytics on a massive scale, right where the data resides.

“By partnering with Zementis, a true PMML innovator, we are able to offer a vendor-agnostic solution for moving enterprise-level predictive analytics into the database execution environment,” said Dr. Steven Hillion, Vice President of Analytics at EMC Greenplum. “With Zementis and PMML, the de-facto standard for representing data mining models, we are eliminating the need to recode predictive analytic models in order to deploy them within our database. In turn, this enables an analyst to reduce the time to insight required in most businesses today.”

Want to learn more?
 

To learn more about how the EMC Greenplum Database and the Universal PMML Plug-in work together, feel free to:

  1. Visit the PMML Plug-in product page
  2. Download the white paper

The Universal PMML Plug-in for the EMC Greenplum Database is available now. Contact us today for more information.

Michael Zeller, CEO, Zementis

 

 

Brief Interview Timo Elliott

Here is a brief interview with Timo Elliott.Timo Elliott is a 19-year veteran of SAP Business Objects.

Ajay- What are the top 5 events in Business Integration and Data Visualization services you saw in 2010 and what are the top three trends you see in these in 2011.


Timo-

Top five events in 2010:

(1) Back to strong market growth. IT spending plummeted last year (BI continued to grow, but more slowly than previous years). This year, organizations reopened their wallets and funded new analytics initiatives — all the signs indicate that BI market growth will be double that of 2009.

(2) The launch of the iPad. Mobile BI has been around for years, but the iPad opened the floodgates of organizations taking a serious look at mobile analytics — and the easy-to-use, executive-friendly iPad dashboards have considerably raised the profile of analytics projects inside organizations.

(3) Data warehousing got exciting again. Decades of incremental improvements (column databases, massively parallel processing, appliances, in-memory processing…) all came together with robust commercial offers that challenged existing data storage and calculation methods. And new “NoSQL” approaches, designed for the new problems of massive amounts of less-structured web data, started moving into the mainstream.

(4) The end of Google Wave, the start of social BI.Google Wave was launched as a rethink of how we could bring together email, instant messaging, and social networks. While Google decided to close down the technology this year, it has left its mark, notably by influencing the future of “social BI”, with several major vendors bringing out commercial products this year.

(5) The start of the big BI merge. While several small independent BI vendors reported strong growth, the major trend of the year was consolidation and integration: the BI megavendors (SAP, Oracle, IBM, Microsoft) increased their market share (sometimes by acquiring smaller vendors, e.g. IBM/SPSS and SAP/Sybase) and integrated analytics with their existing products, blurring the line between BI and other technology areas.

Top three trends next year:

(1) Analytics, reinvented. New DW techniques make it possible to do sub-second, interactive analytics directly against row-level operational data. Now BI processes and interfaces need to be rethought and redesigned to make best use of this — notably by blurring the distinctions between the “design” and “consumption” phases of BI.

(2) Corporate and personal BI come together. The ability to mix corporate and personal data for quick, pragmatic analysis is a common business need. The typical solution to the problem — extracting and combining the data into a local data store (either Excel or a departmental data mart) — pleases users, but introduces duplication and extra costs and makes a mockery of information governance. 2011 will see the rise of systems that let individuals and departments load their data into personal spaces in the corporate environment, allowing pragmatic analytic flexibility without compromising security and governance.

(3) The next generation of business applications. Where are the business applications designed to support what people really do all day, such as implementing this year’s strategy, launching new products, or acquiring another company? 2011 will see the first prototypes of people-focused, flexible, information-centric, and collaborative applications, bringing together the best of business intelligence, “enterprise 2.0”, and existing operational applications.

And one that should happen, but probably won’t:

(4) Intelligence = Information + PEOPLE. Successful analytics isn’t about technology — it’s about people, process, and culture. The biggest trend in 2011 should be organizations spending the majority of their efforts on user adoption rather than technical implementation.                 About- http://timoelliott.com/blog/about

Timo Elliott is a 19-year veteran of SAP BusinessObjects, and has spent the last twenty years working with customers around the world on information strategy.

He works closely with SAP research and innovation centers around the world to evangelize new technology prototypes.

His popular Business Analytics and SAPWeb20 blogs track innovation in analytics and social media, including topics such as augmented corporate reality, collaborative decision-making, and social network analysis.

His PowerPoint Twitter Tools lets presenters see and react to tweets in real time, embedded directly within their slides.

A popular and engaging speaker, Elliott presents regularly to IT and business audiences at international conferences, on subjects such as why BI projects fail and what to do about it, and the intersection of BI and enterprise 2.0.

Prior to Business Objects, Elliott was a computer consultant in Hong Kong and led analytics projects for Shell in New Zealand. He holds a first-class honors degree in Economics with Statistics from Bristol University, England. He blogs on http://timoelliott.com/blog/ (one of the best designed blogs in BI) . You can see more about him personal web site here and photo/sketch blog here. You should follow Timo at http://twitter.com/timoelliott

Art Credit- Timo Elliott

Related Articles

Brief Interview with James G Kobielus

Here is a brief one question interview with James Kobielus, Senior Analyst, Forrester.

Ajay-Describe the five most important events in Predictive Analytics you saw in 2010 and the top three trends in 2011 as per you.

Jim-

Five most important developments in 2010:

  • Continued emergence of enterprise-grade Hadoop solutions as the core of the future cloud-based platforms for advanced analytics
  • Development of the market for analytic solution appliances that incorporate several key features for advanced analytics: massively parallel EDW appliance, in-database analytics and data management function processing, embedded statistical libraries, prebuilt logical domain models, and integrated modeling and mining tools
  • Integration of advanced analytics into core BI platforms with user-friendly, visual, wizard-driven, tools for quick, exploratory predictive modeling, forecasting, and what-if analysis by nontechnical business users
  • Convergence of predictive analytics, data mining, content analytics, and CEP in integrated tools geared  to real-time social media analytics
  • Emergence of CRM and other line-of-business applications that support continuously optimized “next-best action” business processes through embedding of predictive models, orchestration engines, business rules engines, and CEP agility

Three top trends I see in the coming year, above and beyond deepening and adoption of the above-bulleted developments:

  • All-in-memory, massively parallel analytic architectures will begin to gain a foothold in complex EDW environments in support of real-time elastic analytics
  • Further crystallization of a market for general-purpose “recommendation engines” that, operating inline to EDWs, CEP environments, and BPM platforms, enable “next-best action” approaches to emerge from today’s application siloes
  • Incorporation of social network analysis functionality into a wider range of front-office business processes to enable fine-tuned behavioral-based customer segmentation to drive CRM optimization

About –http://www.forrester.com/rb/analyst/james_kobielus

James G. Kobielus
Senior Analyst, Forrester Research

RESEARCH FOCUS

James serves Business Process & Applications professionals. He is a leading expert on data warehousing, predictive analytics, data mining, and complex event processing. In addition to his core coverage areas, James contributes to Forrester’s research in business intelligence, data integration, data quality, and master data management.

PREVIOUS WORK EXPERIENCE

James has a long history in IT research and consulting and has worked for both vendors and research firms. Most recently, he was at Current Analysis, an IT research firm, where he was a principal analyst covering topics ranging from data warehousing to data integration and the Semantic Web. Prior to that position, James was a senior technical systems analyst at Exostar (a hosted supply chain management and eBusiness hub for the aerospace and defense industry). In this capacity, James was responsible for identifying and specifying product/service requirements for federated identity, PKI, and other products. He also worked as an analyst for the Burton Group and was previously employed by LCC International, DynCorp, ADEENA, International Center for Information Technologies, and the North American Telecommunications Association. He is both well versed and experienced in product and market assessments. James is a widely published business/technology author and has spoken at many industry events

Interview Michael J. A. Berry Data Miners, Inc

Here is an interview with noted Data Mining practitioner Michael Berry, author of seminal books in data mining, noted trainer and consultantmjab picture

Ajay- Your famous book “Data Mining Techniques: For Marketing, Sales, and Customer Relationship Management” came out in 2004, and an update is being planned for 2011. What are the various new data mining techniques and their application that you intend to talk about in that book.

Michael- Each time we do a revision, it feels like writing a whole new book. The first edition came out in 1997 and it is hard to believe how much the world has changed since then. I’m currently spending most of my time in the on-line retailing world. The things I worry about today–improving recommendations for cross-sell and up-sell,and search engine optimization–wouldn’t have even made sense to me back then. And the data sizes that are routine today were beyond the capacity of the most powerful super computers of the nineties. But, if possible, Gordon and I have changed even more than the data mining landscape. What has changed us is experience. We learned an awful lot between the first and second editions, and I think we’ve learned even more between the second and third.

One consequence is that we now have to discipline ourselves to avoid making the book too heavy to lift. For the first edition, we could write everything we knew (and arguably, a bit more!); now we have to remind ourselves that our intended audience is still the same–intelligent laymen with a practical interest in getting more information out of data. Not statisticians. Not computer scientists. Not academic researchers. Although we welcome all readers, we are primarily writing for someone who works in a marketing department and has a title with the word “analyst” or “analytics” in it. We have relaxed our “no equations” rule slightly for cases when the equations really do make things easier to explain, but the core explanations are still in words and pictures.

The third edition completes a transition that was already happening in the second edition. We have fully embraced standard statistical modeling techniques as full-fledged components of the data miner’s toolkit. In the first edition, it seemed important to make a distinction between old, dull, statistics, and new, cool, data mining. By the second edition, we realized that didn’t really make sense, but remnants of that attitude persisted. The third edition rectifies this. There is a chapter on statistical modeling techniques that explains linear and logistic regression, naive Bayes models, and more. There is also a brand new chapter on text mining, a curious omission from previous editions.

There is also a lot more material on data preparation. Three whole chapters are devoted to various aspects of data preparation. The first focuses on creating customer signatures. The second is focused on using derived variables to bring information to the surface, and the third deals with data reduction techniques such as principal components. Since this is where we spend the greatest part of our time in our work, it seemed important to spend more time on these subjects in the book as well.

Some of the chapters have been beefed up a bit. The neural network chapter now includes radial basis functions in addition to multi-layer perceptrons. The clustering chapter has been split into two chapters to accommodate new material on soft clustering, self-organizing maps, and more. The survival analysis chapter is much improved and includes material on some of our recent application of survival analysis methods to forecasting. The genetic algorithms chapter now includes a discussion of swarm intelligence.

Ajay- Describe your early career and how you came into Data Mining as a profession. What do you think of various universities now offering MS in Analytics. How do you balance your own teaching experience with your consulting projects at The Data Miners.

Michael- I fell into data mining quite by accident. I guess I always had a latent interest in the topic. As a high school and college student, I was a fan of Martin Gardner‘s mathematical games in in Scientific American. One of my favorite things he wrote about was a game called New Eleusis in which one players, God, makes up a rule to govern how cards can be played (“an even card must be followed by a red card”, say) and the other players have to figure out the rule by watching what plays are allowed by God and which ones are rejected. Just for my own amusement, I wrote a computer program to play the game and presented it at the IJCAI conference in, I think, 1981.

That paper became a chapter in a book on computer game playing–so my first book was about finding patterns in data. Aside from that, my interest in finding patterns in data lay dormant for years. At Thinking Machines, I was in the compiler group. In particular, I was responsible for the run-time system of the first Fortran Compiler for the CM-2 and I represented Thinking Machines at the Fortran 8X (later Fortran-90) standards meetings.

What changed my direction was that Thinking Machines got an export license to sell our first machine overseas. The machine went to a research lab just outside of Paris. The connection machine was so hard to program, that if you bought one, you got an applications engineer to go along with it. None of the applications engineers wanted to go live in Paris for a few months, but I did.

Paris was a lot of fun, and so, I discovered, was actually working on applications. When I came back to the states, I stuck with that applied focus and my next assignment was to spend a couple of years at Epsilon, (then a subsidiary of American Express) working on a database marketing system that stored all the “records of charge” for American Express card members. The purpose of the system was to pick ads to go in the billing envelope. I also worked on some more general purpose data mining software for the CM-5.

When Thinking Machines folded, I had the opportunity to open a Cambridge office for a Virginia-based consulting company called MRJ that had been a major channel for placing Connection Machines in various government agencies. The new group at MRJ was focused on data mining applications in the commercial market. At least, that was the idea. It turned out that they were more interested in data warehousing projects, so after a while we parted company.

That led to the formation of Data Miners. My two partners in Data Miners, Gordon Linoff and Brij Masand, share the Thinking Machines background.

To tell the truth, I really don’t know much about the university programs in data mining that have started to crop up. I’ve visited the one at NC State, but not any of the others.

I myself teach a class in “Marketing Analytics” at the Carroll School of Management at Boston College. It is an elective part of the MBA program there. I also teach short classes for corporations on their sites and at various conferences.

Ajay- At the previous Predictive Analytics World, you took a session on Forecasting and Predicting Subsciber levels (http://www.predictiveanalyticsworld.com/dc/2009/agenda.php#day2-6) .

It seems inability to forecast is a problem many many companies face today. What do you think are the top 5 principles of business forecasting which companies need to follow.

Michael- I don’t think I can come up with five. Our approach to forecasting is essentially simulation. We try to model the underlying processes and then turn the crank to see what happens. If there is a principal behind that, I guess it is to approach a forecast from the bottom up rather than treating aggregate numbers as a time series.

Ajay- You often partner your talks with SAS Institute, and your blog at http://blog.data-miners.com/ sometimes contain SAS code as well. What particular features of the SAS software do you like. Do you use just the Enterprise Miner or other modules as well for Survival Analysis or Forecasting.

Michael- Our first data mining class used SGI’s Mineset for the hands-on examples. Later we developed versions using Clementine, Quadstone, and SAS Enterprise Miner. Then, market forces took hold. We don’t market our classes ourselves, we depend on others to market them and then share in the revenue.

SAS turned out to be much better at marketing our classes than the other companies, so over time we stopped updating the other versions. An odd thing about our relationship with SAS is that it is only with the education group. They let us use Enterprise Miner to develop course materials, but we are explicitly forbidden to use it in our consulting work. As a consequence, we don’t use it much outside of the classroom.

Ajay- Also any other software you use (apart from SQL and J)

Michael- We try to fit in with whatever environment our client has set up. That almost always is SQL-based (Teradata, Oracle, SQL Server, . . .). Often SAS Stat is also available and sometimes Enterprise Miner.

We run into SPSS, Statistica, Angoss, and other tools as well. We tend to work in big data environments so we’ve also had occasion to use Ab Initio and, more recently, Hadoop. I expect to be seeing more of that.

Biography-

Together with his colleague, Gordon Linoff, Michael Berry is author of some of the most widely read and respected books on data mining. These best sellers in the field have been translated into many languages. Michael is an active practitioner of data mining. His books reflect many years of practical, hands-on experience down in the data mines.

Data Mining Techniques cover

Data Mining Techniques for Marketing, Sales and Customer Relationship Management

by Michael J. A. Berry and Gordon S. Linoff
copyright 2004 by John Wiley & Sons
ISB

Mining the Web cover

Mining the Web

by Michael J.A. Berry and Gordon S. Linoff
copyright 2002 by John Wiley & Sons
ISBN 0-471-41609-6

Non-English editions available in Traditional Chinese and Simplified Chinese

This book looks at the new opportunities and challenges for data mining that have been created by the web. The book demonstrates how to apply data mining to specific types of online businesses, such as auction sites, B2B trading exchanges, click-and-mortar retailers, subscription sites, and online retailers of digital content.

Mastering Data Mining

by Michael J.A. Berry and Gordon S. Linoff
copyright 2000 by John Wiley & Sons
ISBN 0-471-33123-6

Non-English editions available in JapaneseItalianTraditional Chinese , and Simplified Chinese

A case study-based guide to applying data mining techniques for solving practical business problems. These “warts and all” case studies are drawn directly from consulting engagements performed by the authors.

A data mining educator as well as a consultant, Michael is in demand as a keynote speaker and seminar leader in the area of data mining generally and the application of data mining to customer relationship management in particular.

Prior to founding Data Miners in December, 1997, Michael spent 8 years at Thinking Machines Corporation. There he specialized in the application of massively parallel supercomputing techniques to business and marketing applications, including one of the largest database marketing systems of the time.

%d bloggers like this: