Using Google Analytics API with R:dimensions and metrics

I modified the query I wrote earlier  at http://www.decisionstats.com/using-google-analytics-with-r/to get multiple dimensions and metrics from the Google Analytics API, like hour of day,day of week to get cyclical parameters.We are adding the dimensions, and metrics to bring more depth in our analysis.Basically we are trying to do a time series analysis for forecasting web analytics data( which is basically time -stamped and rich in details ).

Basically I am modifying the dimensions and metrics parameters of the query code using the list at

http://code.google.com/apis/analytics/docs/gdata/dimsmets/dimsmets.html

 

query <- QueryBuilder()
query$Init(start.date = "2011-08-20",
                   end.date = "2012-08-25",
                   dimensions = c("ga:date","ga:hour","ga:dayOfWeek"),
                   metrics = c("ga:visitors","ga:visits","ga:pageviews","ga:timeOnSite"),
                   sort = c("ga:date","ga:hour","ga:dayOfWeek"),
                   table.id = paste(profiles$profile[3,3]))

#5. Make a request to get the data from the API 

ga.data <- ga$GetReportData(query)

#6. Look at the returned data 

str(ga.data)

head(ga.data$data) 

and we need the lubridate package to create a ymd:hour (time stamp)    since GA gives data aggregated at a hourly level at most. Also we need to smoothen the effect of weekend on web analytics data.

#Using package lubridate to convert character dates into time

library(lubridate)
ga.data$data[,1]=ymd(ga.data$data[,1])
ls()
dataset1=ga.data$data
names(dataset1) <- make.names(names(dataset1))
str(dataset1)
head(dataset1)

To be continued-

Web Analytics using R , Google Analytics and TS Forecasting

This is a continuation of the previous post on using Google Analytics .

Now that we have downloaded and plotted the data- we try and fit time series to the website data to forecast future traffic.

Some observations-

1) Google Analytics has 0 predictive analytics, it is just descriptive analytics and data visualization models (including the recent social analytics). However you can very well add in basic TS function using R to the GA API.

Why do people look at Website Analytics? To know today’s traffic and derive insights for the Future

2) Web Data clearly follows a 7 day peak and trough for weekly effects (weekdays and weekends), this is also true for hourly data …and this can be used for smoothing historic web data for future forecast.

3) On an advanced level, any hugely popular viral posts can be called a level shift (not drift) and accoringly dampened.

Test and Control!

Similarly using ARIMAX, we can factor in quantity and tag of posts as X regressor variables.

and now the code-( dont laugh at the simplicity please, I am just tinkering and playing with data here!)

You need to copy and paste the code at the bottom of   this post  http://www.decisionstats.com/using-google-analytics-with-r/ if you want to download your GA data down first.

Note I am using lubridate ,forecast and timeSeries packages in this section.

#Plotting the Traffic  plot(ga.data$data[,2],type="l") 

library(timeSeries)
library(forecast)

#Using package lubridate to convert character dates into time
library(lubridate)
ga.data$data[,1]=ymd(ga.data$data[,1])
ls()
dataset1=ga.data$data
names(dataset1) <- make.names(names(dataset1))
str(dataset1)
head(dataset1)
dataset2 <- ts(dataset1$ga.visitors,start=0,frequency = frequency(dataset1$ga.visitors), names=dataset1$ga.date)
str(dataset2)
head(dataset2)
ts.test=dataset2[1:200]
ts.control=dataset2[201:275]

 #Note I am splitting the data into test and control here

fitets=ets(ts.test)
plot(fitets)
testets=ets(ts.control,model=fitets)
accuracy(testets)
plot(testets)
spectrum(ts.test,method='ar')
decompose(ts.test)

library("TTR")
bb=SMA(dataset2,n=7)#We are doing a simple moving average for every 7 days. Note this can be 24 hrs for hourly data, or 30 days for daily data for month # 

to month comparison or 12 months for annual
#We notice that Web Analytics needs sommethening for every 7 thday as there is some relation to traffic on weekedays /weekends /same time last week
head(dataset2,40)
head(bb,40)

par(mfrow=c(2,1))
plot(bb,type="l",main="Using Seven Day Moving Average for Web Visitors")
plot(dataset2,main="Original Data")

Created by Pretty R at inside-R.org

Though I still wonder why the R query, gA R code /package could not be on the cloud (why it  needs to be downloaded)– cloud computing Gs?

Also how about adding some MORE predictive analytics to Google Analytics, chaps!

To be continued-

auto.arima() and forecasts!!!

cross validations!!!

and adapting the idiosyncratic periods and cycles  of web analytics to time series !!

Using Google Analytics with R

Some code to read in data from Google Analytics data. Some modifications include adding the SSL authentication code and modifying (in bold) the table.id parameter to choose correct website from a GA profile with many websites

The Google Analytics Package files can be downloaded from http://code.google.com/p/r-google-analytics/downloads/list

It provides access to Google Analytics data natively from the R Statistical Computing programming language. You can use this library to retrieve an R data.frame with Google Analytics data. Then perform advanced statistical analysis, like time series analysis and regressions.

Supported Features

  • Access to v2 of the Google Analytics Data Export API Data Feed
  • A QueryBuilder class to simplify creating API queries
  • API response is converted directly into R as a data.frame
  • Library returns the aggregates, and confidence intervals of the metrics, dynamically if they exist
  • Auto-pagination to return more than 10,000 rows of information by combining multiple data requests. (Upper Limit 1M rows)
  • Authorization through the ClientLogin routine
  • Access to all the profiles ids for the authorized user
  • Full documentation and unit tests
Code-

> library(XML)

>

> library(RCurl)

Loading required package: bitops

>

> #Change path name in the following to the folder you downloaded the Google Analytics Package

>

> source(“C:/Users/KUs/Desktop/CANADA/R/RGoogleAnalytics/R/RGoogleAnalytics.R”)

>

> source(“C:/Users/KUs/Desktop/CANADA/R/RGoogleAnalytics/R/QueryBuilder.R”)

> # download the file needed for authentication

> download.file(url=”http://curl.haxx.se/ca/cacert.pem&#8221;, destfile=”cacert.pem”)

trying URL ‘http://curl.haxx.se/ca/cacert.pem&#8217; Content type ‘text/plain’ length 215993 bytes (210 Kb) opened

URL downloaded 210 Kb

>

> # set the curl options

> curl <- getCurlHandle()

> options(RCurlOptions = list(capath = system.file(“CurlSSL”, “cacert.pem”,

+ package = “RCurl”),

+ ssl.verifypeer = FALSE))

> curlSetOpt(.opts = list(proxy = ‘proxyserver:port’), curl = curl)

An object of class “CURLHandle” Slot “ref”: <pointer: 0000000006AA2B70>

>

> # 1. Create a new Google Analytics API object

>

> ga <- RGoogleAnalytics()

>

> # 2. Authorize the object with your Google Analytics Account Credentials

>

> ga$SetCredentials(“USERNAME”, “PASSWORD”)

>

> # 3. Get the list of different profiles, to help build the query

>

> profiles <- ga$GetProfileData()

>

> profiles #Error Check to See if we get the right website

$profile AccountName ProfileName TableId

1 dudeofdata.com dudeofdata.com ga:44926237

2 knol.google.com knol.google.com ga:45564890

3 decisionstats.com decisionstats.com ga:46751946

$total.results

total.results

1 3

>

> # 4. Build the Data Export API query

>

> #Modify the start.date and end.date parameters based on data requirements

>

> #Modify the table.id at table.id = paste(profiles$profile[X,3]) to get the X th website in your profile

> # 4. Build the Data Export API query

> query <- QueryBuilder() > query$Init(start.date = “2012-01-09”, + end.date = “2012-03-20”, + dimensions = “ga:date”,

+ metrics = “ga:visitors”,

+ sort = “ga:date”,

+ table.id = paste(profiles$profile[3,3]))

>

>

> #5. Make a request to get the data from the API

>

> ga.data <- ga$GetReportData(query)

[1] “Executing query: https://www.google.com/analytics/feeds/data?start-date=2012%2D01%2D09&end-date=2012%2D03%2D20&dimensions=ga%3Adate&metrics=ga%3Avisitors&sort=ga%3Adate&ids=ga%3A46751946&#8221;

>

> #6. Look at the returned data

>

> str(ga.data)

List of 3

$ data :’data.frame’: 72 obs. of 2 variables: ..

$ ga:date : chr [1:72] “20120109” “20120110” “20120111” “20120112” … ..

$ ga:visitors: num [1:72] 394 405 381 390 323 47 169 67 94 89 …

$ aggr.totals :’data.frame’: 1 obs. of 1 variable: ..

$ aggregate.totals: num 28348

$ total.results: num 72

>

> head(ga.data$data)

ga:date ga:visitors

1 20120109 394

2 20120110 405

3 20120111 381

4 20120112 390

5 20120113 323

6 20120114 47 >

> #Plotting the Traffic >

> plot(ga.data$data[,2],type=”l”)

Update- Some errors come from pasting Latex directly to WordPress. Here is some code , made pretty-r in case you want to play with the GA api

library(XML)

library(RCurl)

#Change path name in the following to the folder you downloaded the Google Analytics Package 

source("C:/Users/KUs/Desktop/CANADA/R/RGoogleAnalytics/R/RGoogleAnalytics.R")

source("C:/Users/KUs/Desktop/CANADA/R/RGoogleAnalytics/R/QueryBuilder.R")
# download the file needed for authentication
download.file(url="http://curl.haxx.se/ca/cacert.pem", destfile="cacert.pem")

# set the curl options
curl <- getCurlHandle()
options(RCurlOptions = list(capath = system.file("CurlSSL", "cacert.pem",
package = "RCurl"),
ssl.verifypeer = FALSE))
curlSetOpt(.opts = list(proxy = 'proxyserver:port'), curl = curl)

# 1. Create a new Google Analytics API object 

ga <- RGoogleAnalytics()

# 2. Authorize the object with your Google Analytics Account Credentials 

ga$SetCredentials("ohri2007@gmail.com", "XXXXXXX")

# 3. Get the list of different profiles, to help build the query

profiles <- ga$GetProfileData()

profiles #Error Check to See if we get the right website

# 4. Build the Data Export API query 

#Modify the start.date and end.date parameters based on data requirements 

#Modify the table.id at table.id = paste(profiles$profile[X,3]) to get the X th website in your profile 
# 4. Build the Data Export API query
query <- QueryBuilder()
query$Init(start.date = "2012-01-09",
                   end.date = "2012-03-20",
                   dimensions = "ga:date",
                   metrics = "ga:visitors",
                   sort = "ga:date",
                   table.id = paste(profiles$profile[3,3]))

#5. Make a request to get the data from the API 

ga.data <- ga$GetReportData(query)

#6. Look at the returned data 

str(ga.data)

head(ga.data$data)

#Plotting the Traffic 

plot(ga.data$data[,2],type="l")

Created by Pretty R at inside-R.org

Quantitative Modeling for Arbitrage Positions in Ad KeyWords Internet Marketing

Assume you treat an ad keyword as an equity stock. There are slight differences in the cost for advertising for that keyword across various locations (Zurich vs Delhi) and various channels (Facebook vs Google) . You get revenue if your website ranks naturally in organic search for the keyword, and you have to pay costs for getting traffic to your website for that keyword.
An arbitrage position is defined as a riskless profit when cost of keyword is less than revenue from keyword. We take examples of Adsense  and Adwords primarily.
There are primarily two types of economic curves on the foundation of which commerce of the  internet  resides-
1) Cost Curve- Cost of Advertising to drive traffic into the website  (Google Adwords, Twitter Ads, Facebook , LinkedIn ads)
2) Revenue Curve – Revenue from ads clicked by the incoming traffic on website (like Adsense, LinkAds, Banner Ads, Ad Sharing Programs , In Game Ads)
The cost and revenue curves are primarily dependent on two things
1) Type of KeyWord-Also subdependent on
a) Location of Prospective Customer, and
b) Net Present Value of Good and Service to be eventually purchased
For example , keyword for targeting sales of enterprise “business intelligence software” should ideally be costing say X times as much as keywords for “flower shop for birthdays” where X is the multiple of the expected payoffs from sales of business intelligence software divided by expected payoff from sales of flowers (say in Location, Daytona Beach ,Florida or Austin, Texas)
2) Traffic Volume – Also sub-dependent on Time Series and
a) Seasonality -Annual Shoppping Cycle
b) Cyclicality– Macro economic shifts in time series
The cost and revenue curves are not linear and ideally should be continuous in a definitive exponential or polynomial manner, but in actual reality they may have sharp inflections , due to location, time, as well as web traffic volume thresholds
Type of Keyword – For example ,keywords for targeting sales for Eminem Albums may shoot up in a non linear manner after the musician dies.
The third and not so publicly known component of both the cost and revenue curves is factoring in internet industry dynamics , including relative market share of internet advertising platforms, as well as percentage splits between content creator and ad providing platforms.
For example, based on internet advertising spend, people belive that the internet advertising is currently heading for a duo-poly with Google and Facebook are the top two players, while Microsoft/Skype/Yahoo and LinkedIn/Twitter offer niche options, but primarily depend on price setting from Google/Bing/Facebook.
It is difficut to quantify  the elasticity and efficiency of market curves as most literature and research on this is by in-house corporate teams , or advisors or mentors or consultants to the primary leaders in a kind of incesteous fraternal hold on public academic research on this.
It is recommended that-
1) a balance be found in the need for corporate secrecy to protest shareholder value /stakeholder value maximization versus the need for data liberation for innovation and grow the internet ad pie faster-
2) Cost and Revenue Curves between different keywords, time,location, service providers, be studied by quants for hedging inetrent ad inventory or /and choose arbitrage positions This kind of analysis is done for groups of stocks and commodities in the financial world, but as commerce grows on the internet this may need more specific and independent quants.
3) attention be made to how cost and revenue curves mature as per level of sophistication of underlying economy like Brazil, Russia, China, Korea, US, Sweden may be in different stages of internet ad market evolution.
For example-
A study in cost and revenue curves for certain keywords across domains across various ad providers across various locations from 2003-2008 can help academia and research (much more than top ten lists of popular terms like non quantitative reports) as well as ensure that current algorithmic wightings are not inadvertently given away.
Part 2- of this series will explore the ways to create third party re-sellers of keywords and measuring impacts of search and ad engine optimization based on keywords.

Moving data between Windows and Ubuntu VMWare partition

I use Windows 7 on my laptop (it came pre-installed) and Ubuntu using the VMWare Player. What are the advantages of using VM Player instead of creating a dual-boot system? Well I can quickly shift from Ubuntu to Windows and bakc again without restarting my computer everytime. Using this approach allows me to utilize software that run only on Windows and run software like Rattle, the R data mining GUI, that are much easier installed on Linux.

However if your statistical software is on your Virtual Disk , and your data is on your Windows disk, you need a way to move data from Windows to Ubuntu.

The solution to this as per Ubuntu forums is –http://communities.vmware.com/thread/55242

Open My Computer, browse to the folder you want to share.  Right-click on the folder, select Properties.  Sharing tab.  Select the radio button to “Share this Folder”.  Change the default generated name if you wish; add a description if you wish.  Click the Permissions button to modify the security settings of what users can read/write to the share.

On the Linux side, it depends on the distro, the shell, and the window manager.

Well Ubuntu makes it really easy to configure the Linux steps to move data within Windows and Linux partitions.

 

NEW UPDATE-

VMmare makes it easy to share between your Windows (host) and Linux (guest) OS

 

Step 1

and step 2

Do this

 

and

Start the Wizard

when you finish the wizard and share a drive or folder- hey where do I see my shared ones-

 

see this folder in Linux- /mnt/hgfs (bingo!)

Hacker HW – Make this folder //mnt/hgfs a shortcut in Places your Ubuntu startup

Hacker Hw 2-

Upload using an anon email your VM dark data to Ubuntu one

Delete VM

Purge using software XX

Reinstall VM and bring back backup

 

Note time to do this

 

 

 

-General Sharing in Windows

 

 

Just open the Network tab in Ubuntu- see screenshots below-

Windows will now ask your Ubuntu user for login-

Once Logged in Windows from within Ubuntu Vmware, this is what happens

You see a tab called “users on “windows username”- pc appear on your Ubuntu Desktop  (see top right of the screenshot)

If you double click it- you see your windows path

You can now just click and drag data between your windows and linux partitions , just the way you do it in Windows .

So based on this- if you want to build  decision trees, artifical neural networks, regression models, and even time series models for zero capital expenditure- you can use both Ubuntu/R without compromising on your IT policy of Windows only in your organization (there is a shortage of Ubuntu trained IT administrators in the enterprise world)

Revised Installation Procedure for utilizing both Ubuntu /R/Rattle data mining on your Windows PC.

Using VMWare to build a free data mining system in R, as well as isolate your analytics system (thus using both Linux and Windows without overburdening your machine)

First Time

  1. http://downloads.vmware.com/d/info/desktop_end_user_computing/vmware_player/4_0Download and Install
  2. http://www.ubuntu.com/download/ubuntu/downloadDownload Only
  3. Create New Virtual Image in VM Ware Player
  4. Applications—–Terminal——sudo apt get-install R (to download and install)
  5.                                          sudo R (to open R)
  6. Once R is opened type this  —-install.packages(rattle)—– This will install rattle
  7. library(rattle) will load Rattle—–
  8. rattle() will open the GUI—-
Getting Data from Host to Guest VM
Next Time
  1. Go to VM Player
  2. Open the VM
  3. sudo R in terminal to bring up R
  4. library(rattle) within R
  5. rattle()
At this point even if you dont know any Linux and dont know any R, you can create data mining models using the Rattle GUI (and time series model using E pack in the R Commander GUI) – What can Rattle do in data mining? See this slideshow-http://www.decisionstats.com/data-mining-with-r-gui-rattle-rstats/
If Google Docs is banned as per your enterprise organizational IT policy of having Windows Explorer only- well you can see these screenshots http://rattle.togaware.com/rattle-screenshots.html
%d bloggers like this: