Interview Dan Steinberg Founder Salford Systems

Here is an interview with Dan Steinberg, Founder and President of Salford Systems (http://www.salford-systems.com/ )

Ajay- Describe your journey from academia to technology entrepreneurship. What are the key milestones or turning points that you remember.

 Dan- When I was in graduate school studying econometrics at Harvard,  a number of distinguished professors at Harvard (and MIT) were actively involved in substantial real world activities.  Professors that I interacted with, or studied with, or whose software I used became involved in the creation of such companies as Sun Microsystems, Data Resources, Inc. or were heavily involved in business consulting through their own companies or other influential consultants.  Some not involved in private sector consulting took on substantial roles in government such as membership on the President’s Council of Economic Advisors. The atmosphere was one that encouraged free movement between academia and the private sector so the idea of forming a consulting and software company was quite natural and did not seem in any way inconsistent with being devoted to the advancement of science.

 Ajay- What are the latest products by Salford Systems? Any future product plans or modification to work on Big Data analytics, mobile computing and cloud computing.

 Dan- Our central set of data mining technologies are CART, MARS, TreeNet, RandomForests, and PRIM, and we have always maintained feature rich logistic regression and linear regression modules. In our latest release scheduled for January 2012 we will be including a new data mining approach to linear and logistic regression allowing for the rapid processing of massive numbers of predictors (e.g., one million columns), with powerful predictor selection and coefficient shrinkage. The new methods allow not only classic techniques such as ridge and lasso regression, but also sub-lasso model sizes. Clear tradeoff diagrams between model complexity (number of predictors) and predictive accuracy allow the modeler to select an ideal balance suitable for their requirements.

The new version of our data mining suite, Salford Predictive Modeler (SPM), also includes two important extensions to the boosted tree technology at the heart of TreeNet.  The first, Importance Sampled learning Ensembles (ISLE), is used for the compression of TreeNet tree ensembles. Starting with, say, a 1,000 tree ensemble, the ISLE compression might well reduce this down to 200 reweighted trees. Such compression will be valuable when models need to be executed in real time. The compression rate is always under the modeler’s control, meaning that if a deployed model may only contain, say, 30 trees, then the compression will deliver an optimal 30-tree weighted ensemble. Needless to say, compression of tree ensembles should be expected to be lossy and how much accuracy is lost when extreme compression is desired will vary from case to case. Prior to ISLE, practitioners have simply truncated the ensemble to the maximum allowable size.  The new methodology will substantially outperform truncation.

The second major advance is RULEFIT, a rule extraction engine that starts with a TreeNet model and decomposes it into the most interesting and predictive rules. RULEFIT is also a tree ensemble post-processor and offers the possibility of improving on the original TreeNet predictive performance. One can think of the rule extraction as an alternative way to explain and interpret an otherwise complex multi-tree model. The rules extracted are similar conceptually to the terminal nodes of a CART tree but the various rules will not refer to mutually exclusive regions of the data.

 Ajay- You have led teams that have won multiple data mining competitions. What are some of your favorite techniques or approaches to a data mining problem.

 Dan- We only enter competitions involving problems for which our technology is suitable, generally, classification and regression. In these areas, we are  partial to TreeNet because it is such a capable and robust learning machine. However, we always find great value in analyzing many aspects of a data set with CART, especially when we require a compact and easy to understand story about the data. CART is exceptionally well suited to the discovery of errors in data, often revealing errors created by the competition organizers themselves. More than once, our reports of data problems have been responsible for the competition organizer’s decision to issue a corrected version of the data and we have been the only group to discover the problem.

In general, tackling a data mining competition is no different than tackling any analytical challenge. You must start with a solid conceptual grasp of the problem and the actual objectives, and the nature and limitations of the data. Following that comes feature extraction, the selection of a modeling strategy (or strategies), and then extensive experimentation to learn what works best.

 Ajay- I know you have created your own software. But are there other software that you use or liked to use?

 Dan- For analytics we frequently test open source software to make sure that our tools will in fact deliver the superior performance we advertise. In general, if a problem clearly requires technology other than that offered by Salford, we advise clients to seek other consultants expert in that other technology.

 Ajay- Your software is installed at 3500 sites including 400 universities as per http://www.salford-systems.com/company/aboutus/index.html What is the key to managing and keeping so many customers happy?

 Dan- First, we have taken great pains to make our software reliable and we make every effort  to avoid problems related to bugs.  Our testing procedures are extensive and we have experts dedicated to stress-testing software . Second, our interface is designed to be natural, intuitive, and easy to use, so the challenges to the new user are minimized. Also, clear documentation, help files, and training videos round out how we allow the user to look after themselves. Should a client need to contact us we try to achieve 24-hour turn around on tech support issues and monitor all tech support activity to ensure timeliness, accuracy, and helpfulness of our responses. WebEx/GotoMeeting and other internet based contact permit real time interaction.

 Ajay- What do you do to relax and unwind?

 Dan- I am in the gym almost every day combining weight and cardio training. No matter how tired I am before the workout I always come out energized so locating a good gym during my extensive travels is a must. I am also actively learning Portuguese so I look to watch a Brazilian TV show or Portuguese dubbed movie when I have time; I almost never watch any form of video unless it is available in Portuguese.

 Biography-

http://www.salford-systems.com/blog/dan-steinberg.html

Dan Steinberg, President and Founder of Salford Systems, is a well-respected member of the statistics and econometrics communities. In 1992, he developed the first PC-based implementation of the original CART procedure, working in concert with Leo Breiman, Richard Olshen, Charles Stone and Jerome Friedman. In addition, he has provided consulting services on a number of biomedical and market research projects, which have sparked further innovations in the CART program and methodology.

Dr. Steinberg received his Ph.D. in Economics from Harvard University, and has given full day presentations on data mining for the American Marketing Association, the Direct Marketing Association and the American Statistical Association. After earning a PhD in Econometrics at Harvard Steinberg began his professional career as a Member of the Technical Staff at Bell Labs, Murray Hill, and then as Assistant Professor of Economics at the University of California, San Diego. A book he co-authored on Classification and Regression Trees was awarded the 1999 Nikkei Quality Control Literature Prize in Japan for excellence in statistical literature promoting the improvement of industrial quality control and management.

His consulting experience at Salford Systems has included complex modeling projects for major banks worldwide, including Citibank, Chase, American Express, Credit Suisse, and has included projects in Europe, Australia, New Zealand, Malaysia, Korea, Japan and Brazil. Steinberg led the teams that won first place awards in the KDDCup 2000, and the 2002 Duke/TeraData Churn modeling competition, and the teams that won awards in the PAKDD competitions of 2006 and 2007. He has published papers in economics, econometrics, computer science journals, and contributes actively to the ongoing research and development at Salford.

Interview Scott Gidley CTO and Founder, DataFlux

Here is an interview with Scott Gidley, CTO and co-founder of leading data quality ccompany DataFlux . DataFlux is a part of SAS Institute and in 2011 acquired Baseline Consulting besides launching the latest version of their Master Data Management  product. Continue reading “Interview Scott Gidley CTO and Founder, DataFlux”

Using #Rstats for online data access

There are multiple packages in R to read data straight from online datasets.
These are as follows- Continue reading “Using #Rstats for online data access”

Interview Rapid-I -Ingo Mierswa and Simon Fischer

Here is an interview with Dr Ingo Mierswa , CEO of Rapid -I and Dr Simon Fischer, Head R&D. Rapid-I makes the very popular software Rapid Miner – perhaps one of the earliest leading open source software in business analytics and business intelligence. It is quite easy to use, deploy and with it’s extensions and innovations (including compatibility with R )has continued to grow tremendously through the years.

In an extensive interview Ingo and Simon talk about algorithms marketplace, extensions , big data analytics, hadoop, mobile computing and use of the graphical user interface in analytics.

Special Thanks to Nadja from Rapid I communication team for helping coordinate this interview.( Statuary Blogging Disclosure- Rapid I is a marketing partner with Decisionstats as per the terms in https://decisionstats.com/privacy-3/)

Ajay- Describe your background in science. What are the key lessons that you have learnt while as scientific researcher and what advice would you give to new students today.

Ingo: My time as researcher really was a great experience which has influenced me a lot. I have worked at the AI lab of Prof. Dr. Katharina Morik, one of the persons who brought machine learning and data mining to Europe. Katharina always believed in what we are doing, encouraged us and gave us the space for trying out new things. Funnily enough, I never managed to use my own scientific results in any real-life project so far but I consider this as a quite common gap between science and the “real world”. At Rapid-I, however, we are still heavily connected to the scientific world and try to combine the best of both worlds: solving existing problems with leading-edge technologies.

Simon: In fact, during my academic career I have not worked in the field of data mining at all. I worked on a field some of my colleagues would probably even consider boring, and that is theoretical computer science. To be precise, my research was in the intersection of game theory and network theory. During that time, I have learnt a lot of exciting things, none of which had any business use. Still, I consider that a very valuable experience. When we at Rapid-I hire people coming to us right after graduating, I don’t care whether they know the latest technology with a fancy three-letter acronym – that will be forgotten more quickly than it came. What matters is the way you approach new problems and challenges. And that is also my recommendation to new students: work on whatever you like, as long as you are passionate about it and it brings you forward.

Ajay-  How is the Rapid Miner Extensions marketplace moving along. Do you think there is a scope for people to say create algorithms in a platform like R , and then offer that algorithm as an app for sale just like iTunes or Android apps.

 Simon: Well, of course it is not going to be exactly like iTunes or Android apps are, because of the more business-orientated character. But in fact there is a scope for that, yes. We have talked to several developers, e.g., at our user conference RCOMM, and several people would be interested in such an opportunity. Companies using data mining software need supported software packages, not just something they downloaded from some anonymous server, and that is only possible through a platform like the new Marketplace. Besides that, the marketplace will not only host commercial extensions. It is also meant to be a platform for all the developers that want to publish their extensions to a broader community and make them accessible in a comfortable way. Of course they could just place them on their personal Web pages, but who would find them there? From the Marketplace, they are installable with a single click.

Ingo: What I like most about the new Rapid-I Marketplace is the fact that people can now get something back for their efforts. Developing a new algorithm is a lot of work, in some cases even more that developing a nice app for your mobile phone. It is completely accepted that people buy apps from a store for a couple of Dollars and I foresee the same for sharing and selling algorithms instead of apps. Right now, people can already share algorithms and extensions for free, one of the next versions will also support selling of those contributions. Let’s see what’s happening next, maybe we will add the option to sell complete RapidMiner workflows or even some data pools…

Ajay- What are the recent features in Rapid Miner that support cloud computing, mobile computing and tablets. How do you think the landscape for Big Data (over 1 Tb ) is changing and how is Rapid Miner adapting to it.

Simon: These are areas we are very active in. For instance, we have an In-Database-Mining Extension that allows the user to run their modelling algorithms directly inside the database, without ever loading the data into memory. Using analytic databases like Vectorwise or Infobright, this technology can really boost performance. Our data mining server, RapidAnalytics, already offers functionality to send analysis processes into the cloud. In addition to that, we are currently preparing a research project dealing with data mining in the cloud. A second project is targeted towards the other aspect you mention: the use of mobile devices. This is certainly a growing market, of course not for designing and running analyses, but for inspecting reports and results. But even that is tricky: When you have a large screen you can display fancy and comprehensive interactive dashboards with drill downs and the like. On a mobile device, that does not work, so you must bring your reports and visualizations very much to the point. And this is precisely what data mining can do – and what is hard to do for classical BI.

Ingo: Then there is Radoop, which you may have heard of. It uses the Apache Hadoop framework for large-scale distributed computing to execute RapidMiner processes in the cloud. Radoop has been presented at this year’s RCOMM and people are really excited about the combination of RapidMiner with Hadoop and the scalability this brings.

 Ajay- Describe the Rapid Miner analytics certification program and what steps are you taking to partner with academic universities.

Ingo: The Rapid-I Certification Program was created to recognize professional users of RapidMiner or RapidAnalytics. The idea is that certified users have demonstrated a deep understanding of the data analysis software solutions provided by Rapid-I and how they are used in data analysis projects. Taking part in the Rapid-I Certification Program offers a lot of benefits for IT professionals as well as for employers: professionals can demonstrate their skills and employers can make sure that they hire qualified professionals. We started our certification program only about 6 months ago and until now about 100 professionals have been certified so far.

Simon: During our annual user conference, the RCOMM, we have plenty of opportunities to talk to people from academia. We’re also present at other conferences, e.g. at ECML/PKDD, and we are sponsoring data mining challenges and grants. We maintain strong ties with several universities all over Europe and the world, which is something that I would not want to miss. We are also cooperating with institutes like the ITB in Dublin during their training programmes, e.g. by giving lectures, etc. Also, we are leading or participating in several national or EU-funded research projects, so we are still close to academia. And we offer an academic discount on all our products 🙂

Ajay- Describe the global efforts in making Rapid Miner a truly international software including spread of developers, clients and employees.

Simon: Our clients already are very international. We have a partner network in America, Asia, and Australia, and, while I am responding to these questions, we have a training course in the US. Developers working on the core of RapidMiner and RapidAnalytics, however, are likely to stay in Germany for the foreseeable future. We need specialists for that, and it would be pointless to spread the development team over the globe. That is also owed to the agile philosophy that we are following.

Ingo: Simon is right, Rapid-I already is acting on an international level. Rapid-I now has more than 300 customers from 39 countries in the world which is a great result for a young company like ours. We are of course very strong in Germany and also the rest of Europe, but also concentrate on more countries by means of our very successful partner network. Rapid-I continues to build this partner network and to recruit dynamic and knowledgeable partners and in the future. However, extending and acting globally is definitely part of our strategic roadmap.

Biography

Dr. Ingo Mierswa is working as Chief Executive Officer (CEO) of Rapid-I. He has several years of experience in project management, human resources management, consulting, and leadership including eight years of coordinating and leading the multi-national RapidMiner developer team with about 30 developers and contributors world-wide. He wrote his Phd titled “Non-Convex and Multi-Objective Optimization for Numerical Feature Engineering and Data Mining” at the University of Dortmund under the supervision of Prof. Morik.

Dr. Simon Fischer is heading the research & development at Rapid-I. His interests include game theory and networks, the theory of evolutionary algorithms (e.g. on the Ising model), and theoretical and practical aspects of data mining. He wrote his PhD in Aachen where he worked in the project “Design and Analysis of Self-Regulating Protocols for Spectrum Assignment” within the excellence cluster UMIC. Before, he was working on the vtraffic project within the DFG Programme 1126 “Algorithms for large and complex networks”.

http://rapid-i.com/content/view/181/190/ tells you more on the various types of Rapid Miner licensing for enterprise, individual and developer versions.

(Note from Ajay- to receive an early edition invite to Radoop, click here http://radoop.eu/z1sxe)

 

Running R Studio on a cloud computer for #rstats

So I decided to test the next iteration of http://cloudnumbers.com and I was pleasantly surprised to see how easy it is to start a Linux Cluster and start doing #Rstats computing

on the cloud using R Studio.

Here are some screenshots of my journey.

 

 

 

Register here if you like it-

https://my.cloudnumbers.com/register/65E97A

Cyber Attacks-Protecting your assets and people from cyber attacks

Cyber Attacks-Protecting your assets and people from cyber attacks

Everyday we hear of new cyber attacks on organizations and countries. The latest attacks were on IMF and 200,000 accounts of Citibank and now the website of the US Senate. If some of the most powerful and technologically advanced organizations could not survive targeted attacks, how effective is your organization in handling cyber security. Sony Playstation, Google Gmail, PBS website are other famous targets that have been victimized.

Before we play the blame game by pointing to China for sponsoring hacker attacks, or Russian spammers for creating Bot Nets or ex Silicon Valley /American technology experts rendered jobless by off-shoring, we need to both understand which companies are most vulnerable, which processes need to be fine tuned and what is the plan of action in case your cyber security is breached.

Which companies are most vulnerable?

If you have valuable data, confidential in nature , in electronic form AND connectivity to internet, you have an opening. Think of data as water, if you have a small leakage all the water can be leaked away. To add to complexity, the attackers are mostly unknown, and extremely difficult to catch, and can take a big chunk of your credibility and intellectual property in a very short time.

The best people in technology are not the ones attending meetings in nicely pressed suits– and your IT guy is rarely a match for the talent that is now available on freelance hire for cyber corporate espionage.

Any company or organization that has not undergone through one real time simulated cyber attack or IT audit that focuses on data security is very vulnerable.

Which organizational processes need to be fine tuned ?
Clearly employee access even at senior management needs to be ensured for both technological as well as social vulnerability. Does your reception take the name of senior management if cold called. Do your senior managers surf the internet and use a simple password on the same computer and laptop. Do you have disaster management and redundancy plans.
A wall is only as strong as its weakest brick and the same is true of organizational readiness for cyber attacks.

What is the plan of action in case your cyber security is breached?
Lean back, close your eyes and think your website has just been breached, someone has just stolen confidential emails from your corporate email server, and complete client as well as the most confidential data in your organization has been lost.

Do you have a plan for what to do next? Or are you waiting for an actual cyber event to occur to make that plan.