The Amazing Microsoft Robotics

Amazing stuff from the makers of Kinetic-

Operating systems of Robots may be the future cash cow of Microsoft , while the pirates of Silicon Valley fight fascinating cloudy wars! 🙂

http://www.microsoft.com/robotics/#Product

 

Product Information

Microsoft Robotics Developer Studio 4 beta (RDS4 beta) provides a wide range of support to help make it easy to develop robot applications. RDS4 beta includes a programming model that helps make it easy to develop asynchronous, state-driven applications. RDS4 beta provides a common programming framework that can be applied to support a wide variety of robots, enabling code and skill transfer.

RDS4 beta includes a lightweight asynchronous services-oriented runtime, a set of visual authoring and simulation tools, as well as templates, tutorials, and sample code to help you get started.

Microsoft Robotics Developer Studio 4 beta Datasheet – English (PDF Format)

Product VideoView the product video on Channel 9!

This release has extensive support for the Kinect sensor hardware throug the Kinect for Windows SDK allowing developers to create Kinect-enabled robots in the Visual Simulation Environment and in real life. Along with this release comes a standardized reference spec for building a Kinect-based robot.

See how Microsoft Robotics Developer Studio 4 beta is being used to bring ideas to life in the Microsoft Robotics@Home competition.

Lightweight Asynchronous ServicesOriented Runtime

Lightweight Asynchronous ServicesOriented Runtime

Concurrency and Coordination Runtime (CCR) helps make it easier to handle asynchronous input and output by eliminating the conventional complexities of manual threading, locks, and semaphores. Lightweight state-oriented Decentralized Software Services (DSS) framework enables you to create program modules that can interoperate on a robot and connected PCs by using a relatively simple, open protocol.

Visual Programming Language (VPL)

Visual Programming Language

Visual Programming Language (VPL) provides a relatively simple drag-and-drop visual programming language tool that helps make it easy to create robotics applications. VPL also provides the ability to take a collection of connected blocks and reuse them as a single block elsewhere in your program. VPL is also capable of generating human-readable C#.

DSS Manifest Editor

DSS Manifest Editor

DSS Manifest Editor (DSSME) provides a relatively simple creation of application configuration and distribution scenarios.

DSS Log Analyzer

DSS Log Analyzer

The DSS Log Analyzer tool allows you to view message flows across multiple DSS services. DSS Log Analyzer also allows you to inspect message details.

Visual Simulation Environment (VSE)

Visual Simulation Environment

Visual Simulation Environment (VSE) provides the ability to simulate and test robotic applications using a 3D physics-based simulation tool. This allows developers to create robotics applications without the hardware. Sample simulation models and environments enable you to test your application in a variety of 3D virtual environments.

Google Dart a new programming language for web applications

From Google a new language for structured web applications-

http://www.dartlang.org/docs/technical-overview/index.html ( a rather unstructured website, if I may add)

Dart is a new class-based programming language for creating structured web applications. Developed with the goals of simplicity, efficiency, and scalability, the Dart language combines powerful new language features with familiar language constructs into a clear, readable syntax.

  • structured yet flexible programming language for the web.
  • Make Dart feel familiar and natural to programmers and thus easy to learn.
  • Ensure that all Dart language constructs allow high performance and fast application startup.
  • Make Dart appropriate for the full range of devices on the web—including phones, tablets, laptops, and servers.
  • Provide tools that make Dart run fast across all major modern browsers.

These design goals address the following problems currently facing web developers:

  • Small scripts often evolve into large web applications with no apparent structure—they’re hard to debug and difficult to maintain. In addition, these monolithic apps can’t be split up so that different teams can work on them independently. It’s difficult to be productive when a web application gets large.
  • Scripting languages are popular because their lightweight nature makes it easy to write code quickly. Generally, the contracts with other parts of an application are conveyed in comments rather than in the language structure itself. As a result, it’s difficult for someone other than the author to read and maintain a particular piece of code.
  • With existing languages, the developer is forced to make a choice between static and dynamic languages. Traditional static languages require heavyweight toolchains and a coding style that can feel inflexible and overly constrained.
  • Developers have not been able to create homogeneous systems that encompass both client and server, except for a few cases such as Node.js and Google Web Toolkit (GWT).
  • Different languages and formats entail context switches that are cumbersome and add complexity to the coding process.

Global Warfare on Google Plus

Global Warfare is one of the latest games on Google Plus. There are lots of similarities between this game and Evony at http://evony.com

Global Warfare is made by Kabam https://www.kabam.com/games/global-warfare which is making a total of 3 games for Google Plus (out of 18) and it has Google Ventures as a strategic investor as well (and a member on the board). Google is clearly wanting to bet on online gaming with its earlier strategic investment in Zynga as well. It also acquired http://www.labpixies.com/  (which makes the game Sudoko Puzzles and Flood It but it has more games in reserve as can be seen at https://market.android.com/search?q=labpixies, so clearly G+ is being selective on Games directory at https://plus.google.com/games/directory)

With these gaming companies and others like http://www.digitalchocolate.com/about/ and http://www.rovio.com/index.php?page=company and http://www.popcap.com/ – well they are all there on G+

is gaming the ace in hand in G+ plans for Facebook- time will tell.

Evony of course was a very good game, as it was also very similar (allegedly) to Civilization, and though its advertising campaign of semi clad characters draws flak, it got the worlds attention and recall. While Evony was situated in medieval world,  Global Warfare is a modern warfare equivalent.

Features in Global Warfare-

  • Alliances,
  • multiple player online gaming,
  • social sharing and rewards,
  • in game purchases,
  •  persistent world

Some drawbacks-

  • Slight clutter in gaming space (and lack of nice fonts!)
  • Lack of help forums (or easy availability)
  • Lack of in game search for searching or navigating alliances
Overall- a nice addition to the G+ family of games

 

Oracle adds R to Big Data Appliance -Use #Rstats

From the press release, Oracle gets on R and me too- NoSQL

http://www.oracle.com/us/corporate/press/512001

The Oracle Big Data Appliance is a new engineered system that includes an open source distribution of Apache™ Hadoop™, Oracle NoSQL Database, Oracle Data Integrator Application Adapter for Hadoop, Oracle Loader for Hadoop, and an open source distribution of R.

From

http://www.theregister.co.uk/2011/10/03/oracle_big_data_appliance/

the Big Data Appliance also includes the R programming language, a popular open source statistical-analysis tool. This R engine will integrate with 11g R2, so presumably if you want to do statistical analysis on unstructured data stored in and chewed by Hadoop, you will have to move it to Oracle after the chewing has subsided.

This approach to R-Hadoop integration is different from that announced last week between Revolution Analytics, the so-called Red Hat for stats that is extending and commercializing the R language and its engine, and Cloudera, which sells a commercial Hadoop setup called CDH3 and which was one of the early companies to offer support for Hadoop. Both Revolution Analytics and Cloudera now have Oracle as their competitor, which was no doubt no surprise to either.

In any event, the way they do it, the R engine is put on each node in the Hadoop cluster, and those R engines just see the Hadoop data as a native format that they can do analysis on individually. As statisticians do analyses on data sets, the summary data from all the nodes in the Hadoop cluster is sent back to their R workstations; they have no idea that they are using MapReduce on unstructured data.

Oracle did not supply configuration and pricing information for the Big Data Appliance, and also did not say when it would be for sale or shipping to customers

From

http://www.oracle.com/us/corporate/features/feature-oracle-nosql-database-505146.html

A Horizontally Scaled, Key-Value Database for the Enterprise
Oracle NoSQL Database is a commercial grade, general-purpose NoSQL database using a key/value paradigm. It allows you to manage massive quantities of data, cope with changing data formats, and submit simple queries. Complex queries are supported using Hadoop or Oracle Database operating upon Oracle NoSQL Database data.

Oracle NoSQL Database delivers scalable throughput with bounded latency, easy administration, and a simple programming model. It scales horizontally to hundreds of nodes with high availability and transparent load balancing. Customers might choose Oracle NoSQL Database to support Web applications, acquire sensor data, scale authentication services, or support online serves and social media.

and

from

http://siliconangle.com/blog/2011/09/30/oracle-adopting-open-source-r-to-connect-legacy-systems/

Oracle says it will integrate R with its Oracle Database. Other signs from Oracle show the deeper interest in using the statistical framework for integration with Hadoop to potentially speed statistical analysis. This has particular value with analyzing vast amounts of unstructured data, which has overwhelmed organizations, especially over the past year.

and

from

http://www.oracle.com/us/corporate/features/features-oracle-r-enterprise-498732.html

Oracle R Enterprise

Integrates the Open-Source Statistical Environment R with Oracle Database 11g
Oracle R Enterprise allows analysts and statisticians to run existing R applications and use the R client directly against data stored in Oracle Database 11g—vastly increasing scalability, performance and security. The combination of Oracle Database 11g and R delivers an enterprise-ready, deeply integrated environment for advanced analytics. Users can also use analytical sandboxes, where they can analyze data and develop R scripts for deployment while results stay managed inside Oracle Database.

Building a Regression Model in R – Use #Rstats

One of the most commonly used uses of Statistical Software is building models, and that too logistic regression models for propensity in marketing of goods and services.

 

If building a model is what you do-here is a brief easy essay on  how to build a model in R.

1) Packages to be used-

For smaller datasets

use these

  1. CAR Package http://cran.r-project.org/web/packages/car/index.html
  2. GVLMA Package http://cran.r-project.org/web/packages/gvlma/index.html
  3. ROCR Package http://rocr.bioinf.mpi-sb.mpg.de/
  4. Relaimpo Package
  5. DAAG package
  6. MASS package
  7. Bootstrap package
  8. Leaps package

Also see

http://cran.r-project.org/web/packages/rms/index.html or RMS package

rms works with almost any regression model, but it was especially written to work with binary or ordinal logistic regression, Cox regression, accelerated failure time models, ordinary linear models, the Buckley-James model, generalized least squares for serially or spatially correlated observations, generalized linear models, and quantile regression.

For bigger datasets also see Biglm http://cran.r-project.org/web/packages/biglm/index.html and RevoScaleR packages.

http://www.revolutionanalytics.com/products/enterprise-big-data.php

2) Syntax

  1. outp=lm(y~x1+x2+xn,data=dataset) Model Eq
  2. summary(outp) Model Summary
  3. par(mfrow=c(2,2)) + plot(outp) Model Graphs
  4. vif(outp) MultiCollinearity
  5. gvlma(outp) Heteroscedasticity using GVLMA package
  6. outlierTest (outp) for Outliers
  7. predicted(outp) Scoring dataset with scores
  8. anova(outp)
  9. > predict(lm.result,data.frame(conc = newconc), level = 0.9, interval = “confidence”)

 

For a Reference Card -Cheat Sheet see

http://cran.r-project.org/doc/contrib/Ricci-refcard-regression.pdf

3) Also read-

http://cran.r-project.org/web/views/Econometrics.html

http://cran.r-project.org/web/views/Robust.html

 

Interview Markus Schmidberger ,Cloudnumbers.com

Here is an interview with Markus Schmidberger, Senior Community Manager for cloudnumbers.com. Cloudnumbers.com is the exciting new cloud startup for scientific computing. It basically enables transition to a R and other platforms in the cloud and makes it very easy and secure from the traditional desktop/server model of operation.

Ajay- Describe the startup story for setting up Cloudnumbers.com

Markus- In 2010 the company founders Erik Muttersbach (TU München), Markus Fensterer (TU München) and Moritz v. Petersdorff-Campen (WHU Vallendar) started with the development of the cloud computing environment. Continue reading “Interview Markus Schmidberger ,Cloudnumbers.com”

Interview Dan Steinberg Founder Salford Systems

Here is an interview with Dan Steinberg, Founder and President of Salford Systems (http://www.salford-systems.com/ )

Ajay- Describe your journey from academia to technology entrepreneurship. What are the key milestones or turning points that you remember.

 Dan- When I was in graduate school studying econometrics at Harvard,  a number of distinguished professors at Harvard (and MIT) were actively involved in substantial real world activities.  Professors that I interacted with, or studied with, or whose software I used became involved in the creation of such companies as Sun Microsystems, Data Resources, Inc. or were heavily involved in business consulting through their own companies or other influential consultants.  Some not involved in private sector consulting took on substantial roles in government such as membership on the President’s Council of Economic Advisors. The atmosphere was one that encouraged free movement between academia and the private sector so the idea of forming a consulting and software company was quite natural and did not seem in any way inconsistent with being devoted to the advancement of science.

 Ajay- What are the latest products by Salford Systems? Any future product plans or modification to work on Big Data analytics, mobile computing and cloud computing.

 Dan- Our central set of data mining technologies are CART, MARS, TreeNet, RandomForests, and PRIM, and we have always maintained feature rich logistic regression and linear regression modules. In our latest release scheduled for January 2012 we will be including a new data mining approach to linear and logistic regression allowing for the rapid processing of massive numbers of predictors (e.g., one million columns), with powerful predictor selection and coefficient shrinkage. The new methods allow not only classic techniques such as ridge and lasso regression, but also sub-lasso model sizes. Clear tradeoff diagrams between model complexity (number of predictors) and predictive accuracy allow the modeler to select an ideal balance suitable for their requirements.

The new version of our data mining suite, Salford Predictive Modeler (SPM), also includes two important extensions to the boosted tree technology at the heart of TreeNet.  The first, Importance Sampled learning Ensembles (ISLE), is used for the compression of TreeNet tree ensembles. Starting with, say, a 1,000 tree ensemble, the ISLE compression might well reduce this down to 200 reweighted trees. Such compression will be valuable when models need to be executed in real time. The compression rate is always under the modeler’s control, meaning that if a deployed model may only contain, say, 30 trees, then the compression will deliver an optimal 30-tree weighted ensemble. Needless to say, compression of tree ensembles should be expected to be lossy and how much accuracy is lost when extreme compression is desired will vary from case to case. Prior to ISLE, practitioners have simply truncated the ensemble to the maximum allowable size.  The new methodology will substantially outperform truncation.

The second major advance is RULEFIT, a rule extraction engine that starts with a TreeNet model and decomposes it into the most interesting and predictive rules. RULEFIT is also a tree ensemble post-processor and offers the possibility of improving on the original TreeNet predictive performance. One can think of the rule extraction as an alternative way to explain and interpret an otherwise complex multi-tree model. The rules extracted are similar conceptually to the terminal nodes of a CART tree but the various rules will not refer to mutually exclusive regions of the data.

 Ajay- You have led teams that have won multiple data mining competitions. What are some of your favorite techniques or approaches to a data mining problem.

 Dan- We only enter competitions involving problems for which our technology is suitable, generally, classification and regression. In these areas, we are  partial to TreeNet because it is such a capable and robust learning machine. However, we always find great value in analyzing many aspects of a data set with CART, especially when we require a compact and easy to understand story about the data. CART is exceptionally well suited to the discovery of errors in data, often revealing errors created by the competition organizers themselves. More than once, our reports of data problems have been responsible for the competition organizer’s decision to issue a corrected version of the data and we have been the only group to discover the problem.

In general, tackling a data mining competition is no different than tackling any analytical challenge. You must start with a solid conceptual grasp of the problem and the actual objectives, and the nature and limitations of the data. Following that comes feature extraction, the selection of a modeling strategy (or strategies), and then extensive experimentation to learn what works best.

 Ajay- I know you have created your own software. But are there other software that you use or liked to use?

 Dan- For analytics we frequently test open source software to make sure that our tools will in fact deliver the superior performance we advertise. In general, if a problem clearly requires technology other than that offered by Salford, we advise clients to seek other consultants expert in that other technology.

 Ajay- Your software is installed at 3500 sites including 400 universities as per http://www.salford-systems.com/company/aboutus/index.html What is the key to managing and keeping so many customers happy?

 Dan- First, we have taken great pains to make our software reliable and we make every effort  to avoid problems related to bugs.  Our testing procedures are extensive and we have experts dedicated to stress-testing software . Second, our interface is designed to be natural, intuitive, and easy to use, so the challenges to the new user are minimized. Also, clear documentation, help files, and training videos round out how we allow the user to look after themselves. Should a client need to contact us we try to achieve 24-hour turn around on tech support issues and monitor all tech support activity to ensure timeliness, accuracy, and helpfulness of our responses. WebEx/GotoMeeting and other internet based contact permit real time interaction.

 Ajay- What do you do to relax and unwind?

 Dan- I am in the gym almost every day combining weight and cardio training. No matter how tired I am before the workout I always come out energized so locating a good gym during my extensive travels is a must. I am also actively learning Portuguese so I look to watch a Brazilian TV show or Portuguese dubbed movie when I have time; I almost never watch any form of video unless it is available in Portuguese.

 Biography-

http://www.salford-systems.com/blog/dan-steinberg.html

Dan Steinberg, President and Founder of Salford Systems, is a well-respected member of the statistics and econometrics communities. In 1992, he developed the first PC-based implementation of the original CART procedure, working in concert with Leo Breiman, Richard Olshen, Charles Stone and Jerome Friedman. In addition, he has provided consulting services on a number of biomedical and market research projects, which have sparked further innovations in the CART program and methodology.

Dr. Steinberg received his Ph.D. in Economics from Harvard University, and has given full day presentations on data mining for the American Marketing Association, the Direct Marketing Association and the American Statistical Association. After earning a PhD in Econometrics at Harvard Steinberg began his professional career as a Member of the Technical Staff at Bell Labs, Murray Hill, and then as Assistant Professor of Economics at the University of California, San Diego. A book he co-authored on Classification and Regression Trees was awarded the 1999 Nikkei Quality Control Literature Prize in Japan for excellence in statistical literature promoting the improvement of industrial quality control and management.

His consulting experience at Salford Systems has included complex modeling projects for major banks worldwide, including Citibank, Chase, American Express, Credit Suisse, and has included projects in Europe, Australia, New Zealand, Malaysia, Korea, Japan and Brazil. Steinberg led the teams that won first place awards in the KDDCup 2000, and the 2002 Duke/TeraData Churn modeling competition, and the teams that won awards in the PAKDD competitions of 2006 and 2007. He has published papers in economics, econometrics, computer science journals, and contributes actively to the ongoing research and development at Salford.