Predictive Models Ain’t Easy to Deploy

 

This is a guest blog post by Carole Ann Matignon of Sparkling Logic. You can see more on Sparkling Logic at http://my.sparklinglogic.com/

Decision Management is about combining predictive models and business rules to automate decisions for your business. Insurance underwriting, loan origination or workout, claims processing are all very good use cases for that discipline… But there is a hiccup… It ain’t as easy you would expect…

What’s easy?

If you have a neat model, then most tools would allow you to export it as a PMML model – PMML stands for Predictive Model Markup Language and is a standard XML representation for predictive model formulas. Many model development tools let you export it without much effort. Many BRMS – Business rules Management Systems – let you import it. Tada… The model is ready for deployment.

What’s hard?

The problem that we keep seeing over and over in the industry is the issue around variables.

Those neat predictive models are formulas based on variables that may or may not exist as is in your object model. When the variable is itself a formula based on the object model, like the min, max or sum of Dollar amount spent in Groceries in the past 3 months, and the object model comes with transaction details, such that you can compute it by iterating through those transactions, then the problem is not “that” big. PMML 4 introduced some support for those variables.

The issue that is not easy to fix, and yet quite frequent, is when the model development data model does not resemble the operational one. Your Data Warehouse very likely flattened the object model, and pre-computed some aggregations that make the mapping very hard to restore.

It is clearly not an impossible project as many organizations do that today. It comes with a significant overhead though that forces modelers to involve IT resources to extract the right data for the model to be operationalized. It is a heavy process that is well justified for heavy-duty models that were developed over a period of time, with a significant ROI.

This is a show-stopper though for other initiatives which do not have the same ROI, or would require too frequent model refresh to be viable. Here, I refer to “real” model refresh that involves a model reengineering, not just a re-weighting of the same variables.

For those initiatives where time is of the essence, the challenge will be to bring closer those two worlds, the modelers and the business rules experts, in order to streamline the development AND deployment of analytics beyond the model formula. The great opportunity I see is the potential for a better and coordinated tuning of the cut-off rules in the context of the model refinement. In other words: the opportunity to refine the strategy as a whole. Very ambitious? I don’t think so.

About Carole Ann Matignon

http://my.sparklinglogic.com/index.php/company/management-team

Carole-Ann Matignon Print E-mail

Carole-Ann MatignonCarole-Ann Matignon – Co-Founder, President & Chief Executive Officer

She is a renowned guru in the Decision Management space. She created the vision for Decision Management that is widely adopted now in the industry.  Her claim to fame is managing the strategy and direction of Blaze Advisor, the leading BRMS product, while she also managed all the Decision Management tools at FICO (business rules, predictive analytics and optimization). She has a vision for Decision Management both as a technology and a discipline that can revolutionize the way corporations do business, and will never get tired of painting that vision for her audience.  She speaks often at Industry conferences and has conducted university classes in France and Washington DC.

She started her career building advanced systems using all kinds of technologies — expert systems, rules, optimization, dashboarding and cubes, web search, and beta version of database replication. At Cleversys (acquired by Kurt Salmon & Associates), she also conducted strategic consulting gigs around change management.

While playing with advanced software components, she found a passion for technology and joined ILOG (acquired by IBM). She developed a growing interest in Optimization as well as Business Rules. At ILOG, she coined the term BRMS while brainstorming with her Sales counterpart. She led the Presales organization for Telecom in the Americas up until 2000 when she joined Blaze Software (acquired by Brokat Technologies, HNC Software and finally FICO).

Her 360-degree experience allowed her to gain appreciation for all aspects of a software company, giving her a unique perspective on the business. Her technical background kept her very much in touch with technology as she advanced.

Oracle launches its version of R #rstats

From-

http://www.oracle.com/us/corporate/press/1515738

Integrates R Statistical Programming Language into Oracle Database 11g

News Facts

Oracle today announced the availability of Oracle Advanced Analytics, a new option for Oracle Database 11g that bundles Oracle R Enterprise together with Oracle Data Mining.
Oracle R Enterprise delivers enterprise class performance for users of the R statistical programming language, increasing the scale of data that can be analyzed by orders of magnitude using Oracle Database 11g.
R has attracted over two million users since its introduction in 1995, and Oracle R Enterprise dramatically advances capability for R users. Their existing R development skills, tools, and scripts can now also run transparently, and scale against data stored in Oracle Database 11g.
Customer testing of Oracle R Enterprise for Big Data analytics on Oracle Exadata has shown up to 100x increase in performance in comparison to their current environment.
Oracle Data Mining, now part of Oracle Advanced Analytics, helps enable customers to easily build and deploy predictive analytic applications that help deliver new insights into business performance.
Oracle Advanced Analytics, in conjunction with Oracle Big Data ApplianceOracle Exadata Database Machine and Oracle Exalytics In-Memory Machine, delivers the industry’s most integrated and comprehensive platform for Big Data analytics.

Comprehensive In-Database Platform for Advanced Analytics

Oracle Advanced Analytics brings analytic algorithms to data stored in Oracle Database 11g and Oracle Exadata as opposed to the traditional approach of extracting data to laptops or specialized servers.
With Oracle Advanced Analytics, customers have a comprehensive platform for real-time analytic applications that deliver insight into key business subjects such as churn prediction, product recommendations, and fraud alerting.
By providing direct and controlled access to data stored in Oracle Database 11g, customers can accelerate data analyst productivity while maintaining data security throughout the enterprise.
Powered by decades of Oracle Database innovation, Oracle R Enterprise helps enable analysts to run a variety of sophisticated numerical techniques on billion row data sets in a matter of seconds making iterative, speed of thought, and high-quality numerical analysis on Big Data practical.
Oracle R Enterprise drastically reduces the time to deploy models by eliminating the need to translate the models to other languages before they can be deployed in production.
Oracle R Enterprise integrates the extensive set of Oracle Database data mining algorithms, analytics, and access to Oracle OLAP cubes into the R language for transparent use by R users.
Oracle Data Mining provides an extensive set of in-database data mining algorithms that solve a wide range of business problems. These predictive models can be deployed in Oracle Database 11g and use Oracle Exadata Smart Scan to rapidly score huge volumes of data.
The tight integration between R, Oracle Database 11g, and Hadoop enables R users to write one R script that can run in three different environments: a laptop running open source R, Hadoop running with Oracle Big Data Connectors, and Oracle Database 11g.
Oracle provides single vendor support for the entire Big Data platform spanning the hardware stack, operating system, open source R, Oracle R Enterprise and Oracle Database 11g.
To enable easy enterprise-wide Big Data analysis, results from Oracle Advanced Analytics can be viewed from Oracle Business Intelligence Foundation Suite and Oracle Exalytics In-Memory Machine.

Supporting Quotes

“Oracle is committed to meeting the challenges of Big Data analytics. By building upon the analytical depth of Oracle SQL, Oracle Data Mining and the R environment, Oracle is delivering a scalable and secure Big Data platform to help our customers solve the toughest analytics problems,” said Andrew Mendelsohn, senior vice president, Oracle Server Technologies.
“We work with leading edge customers who rely on us to deliver better BI from their Oracle Databases. The new Oracle R Enterprise functionality allows us to perform deep analytics on Big Data stored in Oracle Databases. By leveraging R and its library of open source contributed CRAN packages combined with the power and scalability of Oracle Database 11g, we can now do that,” said Mark Rittman, co-founder, Rittman Mead.
Oracle Advanced Analytics — an option to Oracle Database 11g Enterprise Edition – extends the database into a comprehensive advanced analytics platform through two major components: Oracle R Enterprise and Oracle Data Mining. With Oracle Advanced Analytics, customers have a comprehensive platform for real-time analytic applications that deliver insight into key business subjects such as churn prediction, product recommendations, and fraud alerting.

Oracle R Enterprise tightly integrates the open source R programming language with the database to further extend the database with Rs library of statistical functionality, and pushes down computations to the database. Oracle R Enterprise dramatically advances the capability for R users, and allows them to use their existing R development skills and tools, and scripts can now also run transparently and scale against data stored in Oracle Database 11g.

Oracle Data Mining provides powerful data mining algorithms that run as native SQL functions for in-database model building and model deployment. It can be accessed through the SQL Developer extension Oracle Data Miner to build, evaluate, share and deploy predictive analytics methodologies. At the same time the high-performance Oracle-specific data mining algorithms are accessible from R.

BENEFITS

  • Scalability—Allows customers to easily scale analytics as data volume increases by bringing the algorithms to where the data resides – in the database
  • Performance—With analytical operations performed in the database, R users can take advantage of the extreme performance of Oracle Exadata
  • Security—Provides data analysts with direct but controlled access to data in Oracle Database 11g, accelerating data analyst productivity while maintaining data security
  • Save Time and Money—Lowers overall TCO for data analysis by eliminating data movement and shortening the time it takes to transform “raw data” into “actionable information”
Oracle R Hadoop Connector Gives R users high performance native access to Hadoop Distributed File System (HDFS) and MapReduce programming framework.
This is a  R package
From the datasheet at

Self Driving Cars , Geo Coded Ads, End of Privacy

Imagine a world in which your car tracks everywhere you go. Over a period of time, it builds up a database of your driving habits, how long you stay at particular kinds of dining places, entertainment places (ahem!) , and the days, and times you do it.  You can no longer go to massage parlours without your data being checked by your car software admin (read – your home admin)

And that data is mined using machine learning algols to give you better ads for pizzas, or a reminder for food after every 3 hours , or an ad for beer every Thursday after 8 pm .

Welcome Brave New World!

Analytics for Cyber Conflict -Part Deux

Part 1 in this series is avaiable at http://www.decisionstats.com/analytics-for-cyber-conflict/

The next articles in this series will cover-

  1. the kind of algorithms that are currently or being proposed for cyber conflict, as well as or detection

Cyber Conflict requires some basic elements of the following broad disciplines within Computer and Information Science (besides the obvious disciplines of heterogeneous database types for different kinds of data) –

1) Cryptography – particularly a cryptographic  hash function that maximizes cost and time of the enemy trying to break it.

From http://en.wikipedia.org/wiki/Cryptographic_hash_function

The ideal cryptographic hash function has four main or significant properties:

  • it is easy (but not necessarily quick) to compute the hash value for any given message
  • it is infeasible to generate a message that has a given hash
  • it is infeasible to modify a message without changing the hash
  • it is infeasible to find two different messages with the same hash

A commercial spin off is to use this to anonymized all customer data stored in any database, such that no database (or data table) that is breached contains personally identifiable information. For example anonymizing the IP Addresses and DNS records with a mashup  (embedded by default within all browsers) of Tor and MafiaaFire extensions can help create better information privacy on the internet.

This can also help in creating better encryption between Instant Messengers in Communication

2) Data Disaster Planning for Data Storage (but also simulations for breaches)- including using cloud computing, time sharing, or RAID for backing up data. Planning and creating an annual (?) exercise for a simulated cyber breach of confidential just like a cyber audit- similar to an annual accounting audit

3) Basic Data Reduction Algorithms for visualizing large amounts of information. This can include

  1. K Means Clustering, http://www.jstor.org/pss/2346830 , http://www.cs.ust.hk/~qyang/Teaching/537/Papers/huang98extensions.pdf , and http://stackoverflow.com/questions/6372397/k-means-with-really-large-matrix
  2. Topic Models (LDA) http://www.decisionstats.com/topic-models/,
  3. Social Network Analysis http://en.wikipedia.org/wiki/Social_network_analysis,
  4. Graph Analysis http://micans.org/mcl/ and http://www.ncbi.nlm.nih.gov/pubmed/19407357
  5. MapReduce and Parallelization algorithms for computational boosting http://www.slideshare.net/marin_dimitrov/large-scale-data-analysis-with-mapreduce-part-i

In the next article we will examine

  1. the role of non state agents as well as state agents competing and cooperating,
  2. and what precautions can knowledge discovery in databases practitioners employ to avoid breaches of security, ethics, and regulation.

Analytics for Cyber Conflict

 

The emerging use of Analytics and Knowledge Discovery in Databases for Cyber Conflict and Trade Negotiations

 

The blog post is the first in series or articles on cyber conflict and the use of analytics for targeting in both offense and defense in conflict situations.

 

It covers knowledge discovery in four kinds of databases (so chosen because of perceived importance , sensitivity, criticality and functioning of the geopolitical economic system)-

  1. Databases on Unique Identity Identifiers- including next generation biometric databases connected to Government Initiatives and Banking, and current generation databases of identifiers like government issued documents made online
  2. Databases on financial details -This includes not only traditional financial service providers but also online databases with payment details collected by retail product selling corporates like Sony’s Playstation Network, Microsoft ‘s XBox and
  3. Databases on contact details – including those by offline businesses collecting marketing databases and contact details
  4. Databases on social behavior- primarily collected by online businesses like Facebook , and other social media platforms.

It examines the role of

  1. voluntary privacy safeguards and government regulations ,

  2. weak cryptographic security of databases,

  3. weakness in balancing marketing ( maximized data ) with privacy (minimized data)

  4. and lastly the role of ownership patterns in database owning corporates

A small distinction between cyber crime and cyber conflict is that while cyber crime focusses on stealing data, intellectual property and information  to primarily maximize economic gains

cyber conflict focuses on stealing information and also disrupt effective working of database backed systems in order to gain notional competitive advantages in economics as well as geo-politics. Cyber terrorism is basically cyber conflict by non-state agents or by designated terrorist states as defined by the regulations of the “target” entity. A cyber attack is an offensive action related to cyber-infrastructure (like the Stuxnet worm that disabled uranium enrichment centrifuges of Iran). Cyber attacks and cyber terrorism are out of scope of this paper, we will concentrate on cyber conflicts involving databases.

Some examples are given here-

Types of Knowledge Discovery in –

1) Databases on Unique Identifiers- including biometric databases.

Unique Identifiers or primary keys for identifying people are critical for any intensive knowledge discovery program. The unique identifier generated must be extremely secure , and not liable to reverse engineering of the cryptographic hash function.

For biometric databases, an interesting possibility could be determining the ethnic identity from biometric information, and also mapping relatives. Current biometric information that is collected is- fingerprint data, eyes iris data, facial data. A further feature could be adding in voice data as a part of biometric databases.

This is subject to obvious privacy safeguards.

For example, Google recently unveiled facial recognition to unlock Android 4.0 mobiles, only to find out that the security feature could easily be bypassed by using a photo of the owner.

 

 

Example of Biometric Databases

In Afghanistan more than 2 million Afghans have contributed iris, fingerprint, facial data to a biometric database. In India, 121 million people have already been enrolled in the largest biometric database in the world. More than half a million customers of the Tokyo Mitsubishi Bank are are already using biometric verification at ATMs.

Examples of Breached Online Databases

In 2011, Playstation Network by Sony (PSN) lost data of 77 million customers including personal information and credit card information. Additionally data of 24 million customers were lost by Sony’s Sony Online Entertainment. The websites of open source platforms like SourceForge, WineHQ and Kernel.org were also broken into 2011. Even retailers like McDonald and Walgreen reported database breaches.

 

The role of cyber conflict arises in the following cases-

  1. Databases are online for accessing and authentication by proper users. Databases can be breached remotely by non-owners ( or “perpetrators”) non with much lesser chance of intruder identification, detection and penalization by regulators, or law enforcers (or “protectors”) than offline modes of intellectual property theft.

  2. Databases are valuable to external agents (or “sponsors”) subsidizing ( with finance, technology, information, motivation) the perpetrators for intellectual property theft. Databases contain information that can be used to disrupt the functioning of a particular economy, corporation (or “ primary targets”) or for further chain or domino effects in accessing other data (or “secondary targets”)

  3. Loss of data is more expensive than enhanced cost of security to database owners

  4. Loss of data is more disruptive to people whose data is contained within the database (or “customers”)

So the role play for different people for these kind of databases consists of-

1) Customers- who are in the database

2) Owners -who own the database. They together form the primary and secondary targets.

3) Protectors- who help customers and owners secure the databases.

and

1) Sponsors- who benefit from the theft or disruption of the database

2) Perpetrators- who execute the actual theft and disruption in the database

The use of topic models and LDA is known for making data reduction on text, and the use of data visualization including tied to GPS based location data is well known for investigative purposes, but the increasing complexity of both data generation and the sophistication of machine learning driven data processing makes this an interesting area to watch.

 

 

The next article in this series will cover-

the kind of algorithms that are currently or being proposed for cyber conflict, the role of non state agents , and what precautions can knowledge discovery in databases practitioners employ to avoid breaches of security, ethics, and regulation.

Citations-

  1. Michael A. Vatis , CYBER ATTACKS DURING THE WAR ON TERRORISM: A PREDICTIVE ANALYSIS Dartmouth College (Institute for Security Technology Studies).
  2. From Data Mining to Knowledge Discovery in Databases Usama Fayyad, Gregory Piatetsky-Shapiro, and Padhraic Smyt

Timo Elliott on 2012

Continuing the DecisionStats series on  trends for 2012, Timo Elliott , Technology Evangelist  at SAP Business Objects, looks at the predictions he made in the beginning of  2011 and follows up with the things that surprised him in 2011, and what he foresees in 2012.

You can read last year’s predictions by Mr Elliott at http://www.decisionstats.com/brief-interview-timo-elliott/

Timo- Here are my comments on the “top three analytics trends” predictions I made last year:

(1) Analytics, reinvented. New DW techniques make it possible to do sub-second, interactive analytics directly against row-level operational data. Now BI processes and interfaces need to be rethought and redesigned to make best use of this — notably by blurring the distinctions between the “design” and “consumption” phases of BI.

I spent most of 2011 talking about this theme at various conferences: how existing BI technology israpidly becoming obsolete and how the changes are akin to the move from film to digital photography. Technology that has been around for many years (in-memory, column stores, datawarehouse appliances, etc.) came together to create exciting new opportunities and even generally-skeptical industry analysts put out press releases such as “Gartner Says Data Warehousing Reaching Its Most Significant Inflection Point Since Its Inception.” Some of the smaller BI vendors had been pushing in-memory analytics for years, but the general market started paying more attention when megavendors like SAP started painting a long-term vision of in-memory becoming a core platform for applications, not just analytics. Database leader Oracle was forced to upgrade their in-memory messaging from “It’s a complete fantasy” to “we have that too”.

(2) Corporate and personal BI come together. The ability to mix corporate and personal data for quick, pragmatic analysis is a common business need. The typical solution to the problem — extracting and combining the data into a local data store (either Excel or a departmental data mart) — pleases users, but introduces duplication and extra costs and makes a mockery of information governance. 2011 will see the rise of systems that let individuals and departments load their data into personal spaces in the corporate environment, allowing pragmatic analytic flexibility without compromising security and governance.

The number of departmental “data discovery” initiatives continued to rise through 2011, but new tools do make it easier for business people to upload and manipulate their own information while using the corporate standards. 2012 will see more development of “enterprise data discovery” interfaces for casual users.

(3) The next generation of business applications. Where are the business applications designed to support what people really do all day, such as implementing this year’s strategy, launching new products, or acquiring another company? 2011 will see the first prototypes of people-focused, flexible, information-centric, and collaborative applications, bringing together the best of business intelligence, “enterprise 2.0”, and existing operational applications.

2011 saw the rise of sophisticated, user-centric mobile applications that combine data from corporate systems with GPS mapping and the ability to “take action”, such as mobile medical analytics for doctors or mobile beauty advisor applications, and collaborative BI started becoming a standard part of enterprise platforms.

And one that should happen, but probably won’t: (4) Intelligence = Information + PEOPLE. Successful analytics isn’t about technology — it’s about people, process, and culture. The biggest trend in 2011 should be organizations spending the majority of their efforts on user adoption rather than technical implementation.

Unsurprisingly, there was still high demand for presentations on why BI projects fail and how to implement BI competency centers.  The new architectures probably resulted in even more emphasis on technology than ever, while business peoples’ expectations skyrocketed, fueled by advances in the consumer world. The result was probably even more dissatisfaction in the past, but the benefits of the new architectures should start becoming clearer during 2012.

What surprised me the most:

The rapid rise of Hadoop / NoSQL. The potentials of the technology have always been impressive, but I was surprised just how quickly these technology has been used to address real-life business problems (beyond the “big web” vendors where it originated), and how quickly it is becoming part of mainstream enterprise analytic architectures (e.g. Sybase IQ 15.4 includes native MapReduce APIs, Hadoop integration and federation, etc.)

Prediction for 2012:

As I sat down to gather my thoughts about BI in 2012, I quickly came up with the same long laundry list of BI topics as everybody else: in-memory, mobile, predictive, social, collaborative decision-making, data discovery, real-time, etc. etc.  All of these things are clearly important, and where going to continue to see great improvements this year. But I think that the real “next big thing” in BI is what I’m seeing when I talk to customers: they’re using these new opportunities not only to “improve analytics” but also fundamentally rethink some of their key business processes.

Instead of analytics being something that is used to monitor and eventually improve a business process, analytics is becoming a more fundamental part of the business process itself. One example is a large telco company that has transformed the way they attract customers. Instead of laboriously creating a range of rate plans, promoting them, and analyzing the results, they now use analytics to automatically create hundreds of more complex, personalized rate plans. They then throw them out into the market, monitor in real time, and quickly cull any that aren’t successful. It’s a way of doing business that would have been inconceivable in the past, and a lot more common in the future.

 

About

 

Timo Elliott

Timo Elliott is a 20-year veteran of SAP BusinessObjects, and has spent the last quarter-century working with customers around the world on information strategy.

He works closely with SAP research and innovation centers around the world to evangelize new technology prototypes.

His popular Business Analytics blog tracks innovation in analytics and social media, including topics such as augmented corporate reality, collaborative decision-making, and social network analysis.

His PowerPoint Twitter Tools lets presenters see and react to tweets in real time, embedded directly within their slides.

A popular and engaging speaker, Elliott presents regularly to IT and business audiences at international conferences, on subjects such as why BI projects fail and what to do about it, and the intersection of BI and enterprise 2.0.

Prior to Business Objects, Elliott was a computer consultant in Hong Kong and led analytics projects for Shell in New Zealand. He holds a first-class honors degree in Economics with Statistics from Bristol University, England

Timo can be contacted via Twitter at https://twitter.com/timoelliott

 Part 1 of this series was from James Kobielus, Forrestor at http://www.decisionstats.com/jim-kobielus-on-2012/

Jim Kobielus on 2012

Jim Kobielus revisits the predictions he made in 2011 (and a summary of 2010) , and makes some fresh ones for 2012. For technology watchers, this is an article by one of the gurus of enterprise software.

 

All of those trends predictions (at http://www.decisionstats.com/brief-interview-with-james-g-kobielus/ ) came true in 2011, and are in full force in 2012 as well.Here are my predictions for 2012, and the links to the 3 blogposts in which I made them last month:

 

The Year Ahead in Next Best Action? Here’s the Next Best Thing to a Crystal Ball!

  • The next-best-action market will continue to coalesce around core solution capabilities.
  • Data scientists will become the principal application developers for next best action.
  • Real-world experiments will become the new development paradigm in next best action.

The Year Ahead in Advanced Analytics? Advances on All Fronts!

  • Open-source platforms will expand their footprint in advanced analytics.
  • Data science centers of excellence will spring up everywhere.
  • Predictive analytics and interactive exploration will enter the mainstream BI user experience:

The Year Ahead In Big Data? Big, Cool, New Stuff Looms Large!

  • Enterprise Hadoop deployments will expand at a rapid clip.
  • In-memory analytics platforms will grow their footprint.
  • Graph databases will come into vogue.

 

And in an exclusive and generous favor for DecisionStats, Jim does some crystal gazing for the cloud computing field in 2012-

Cloud/SaaS EDWs will cross the enterprise-adoption inflection point. In 2012, cloud and software-as-a-service (SaaS) enterprise data warehouses (EDWs), offered on a public subscription basis, will gain greater enterprise adoption as a complement or outright replacement for appliance- and software-based EDWs. A growing number of established and startup EDW vendors will roll out cloud/SaaS “Big Data” offerings. Many of these will supplement and extend RDBMS and columnar technologies with Hadoop, key-value, graph, document, and other new database architectures.

About-

http://www.forrester.com/rb/analyst/james_kobielus

James G. Kobielus James G. Kobielus
Senior Analyst

RESEARCH FOCUS

 

James serves Business Process & Application Development & Delivery Professionals. He is a leading expert on data warehousing, predictive analytics, data mining, and complex event processing. In addition to his core coverage areas, James contributes to Forrester’s research in business intelligence, data integration, data quality, and master data management.

 

PREVIOUS WORK EXPERIENCE

 

James has a long history in IT research and consulting and has worked for both vendors and research firms. Most recently, he was at Current Analysis, an IT research firm, where he was a principal analyst covering topics ranging from data warehousing to data integration and the Semantic Web. Prior to that position, James was a senior technical systems analyst at Exostar (a hosted supply chain management and eBusiness hub for the aerospace and defense industry). In this capacity, James was responsible for identifying and specifying product/service requirements for federated identity, PKI, and other products. He also worked as an analyst for the Burton Group and was previously employed by LCC International, DynCorp, ADEENA, International Center for Information Technologies, and the North American Telecommunications Association. He is both well versed and experienced in product and market assessments. James is a widely published business/technology author and has spoken at many industry events.

Contact –

Twitter: http://twitter.com/jameskobielus