Quantitative Modeling for Arbitrage Positions in Ad KeyWords Internet Marketing

Assume you treat an ad keyword as an equity stock. There are slight differences in the cost for advertising for that keyword across various locations (Zurich vs Delhi) and various channels (Facebook vs Google) . You get revenue if your website ranks naturally in organic search for the keyword, and you have to pay costs for getting traffic to your website for that keyword.
An arbitrage position is defined as a riskless profit when cost of keyword is less than revenue from keyword. We take examples of Adsense  and Adwords primarily.
There are primarily two types of economic curves on the foundation of which commerce of the  internet  resides-
1) Cost Curve- Cost of Advertising to drive traffic into the website  (Google Adwords, Twitter Ads, Facebook , LinkedIn ads)
2) Revenue Curve – Revenue from ads clicked by the incoming traffic on website (like Adsense, LinkAds, Banner Ads, Ad Sharing Programs , In Game Ads)
The cost and revenue curves are primarily dependent on two things
1) Type of KeyWord-Also subdependent on
a) Location of Prospective Customer, and
b) Net Present Value of Good and Service to be eventually purchased
For example , keyword for targeting sales of enterprise “business intelligence software” should ideally be costing say X times as much as keywords for “flower shop for birthdays” where X is the multiple of the expected payoffs from sales of business intelligence software divided by expected payoff from sales of flowers (say in Location, Daytona Beach ,Florida or Austin, Texas)
2) Traffic Volume – Also sub-dependent on Time Series and
a) Seasonality -Annual Shoppping Cycle
b) Cyclicality– Macro economic shifts in time series
The cost and revenue curves are not linear and ideally should be continuous in a definitive exponential or polynomial manner, but in actual reality they may have sharp inflections , due to location, time, as well as web traffic volume thresholds
Type of Keyword – For example ,keywords for targeting sales for Eminem Albums may shoot up in a non linear manner after the musician dies.
The third and not so publicly known component of both the cost and revenue curves is factoring in internet industry dynamics , including relative market share of internet advertising platforms, as well as percentage splits between content creator and ad providing platforms.
For example, based on internet advertising spend, people belive that the internet advertising is currently heading for a duo-poly with Google and Facebook are the top two players, while Microsoft/Skype/Yahoo and LinkedIn/Twitter offer niche options, but primarily depend on price setting from Google/Bing/Facebook.
It is difficut to quantify  the elasticity and efficiency of market curves as most literature and research on this is by in-house corporate teams , or advisors or mentors or consultants to the primary leaders in a kind of incesteous fraternal hold on public academic research on this.
It is recommended that-
1) a balance be found in the need for corporate secrecy to protest shareholder value /stakeholder value maximization versus the need for data liberation for innovation and grow the internet ad pie faster-
2) Cost and Revenue Curves between different keywords, time,location, service providers, be studied by quants for hedging inetrent ad inventory or /and choose arbitrage positions This kind of analysis is done for groups of stocks and commodities in the financial world, but as commerce grows on the internet this may need more specific and independent quants.
3) attention be made to how cost and revenue curves mature as per level of sophistication of underlying economy like Brazil, Russia, China, Korea, US, Sweden may be in different stages of internet ad market evolution.
For example-
A study in cost and revenue curves for certain keywords across domains across various ad providers across various locations from 2003-2008 can help academia and research (much more than top ten lists of popular terms like non quantitative reports) as well as ensure that current algorithmic wightings are not inadvertently given away.
Part 2- of this series will explore the ways to create third party re-sellers of keywords and measuring impacts of search and ad engine optimization based on keywords.

My Digital Trail

Someone I know recently mentioned that I have an extensive Digital Trail. I do.

I have 7863 connections at http://www.linkedin.com/in/ajayohri, 31 likes at https://www.facebook.com/ajayohri and 19 likes at https://www.facebook.com/pages/Ajay-Ohri/157086547679568, 409 friends (and 13 subscribers) at https://www.facebook.com/byebyebyer .On twitter I have 499 followers at http://twitter.com/0_h_r_1 and 344 followers at http://twitter.com/rforbusiness , and even on Google Plus some 617 people circling me at https://plus.google.com/116302364907696741272 (besides 6 other pages on G+)

Even my Youtube channel at http://www.youtube.com/decisionstats is more popular than I am in non-digital life. my non existant video blog at http://videosforkush.blogspot.com/ and my poetry blog at http://poemsforkush.wordpress.com/, and my comments on other social media, and my blurbs on my tumblr http://kushohri.tumblr.com/, and you get a lot of my psych profile.

Why do I do leave so much trail digitally?

For one reason- I was a bit of introvert always and technology set me free, the opportunity to think and yet be relaxed in anonymous chatter.

For the second reason- I am divorced and my wife got my 4 yr old son’s custody. Even though I talk to him once a day for a couple of minutes, somehow I hope when he grows, he reads my digital trail , maybe even these words, on the kind of man I was and the phases and seasons of life I went through.

 

That is all.

 

 

Statistics on Social Media

Some official statistics on social media from the owners themselves

1) Facebook-

http://www.facebook.com/press/info.php?statistics

Date -17 Nov 2011

Statistics

People on Facebook

Google Plus API- statistical text mining anyone

For the past year and two I have noticed a lot of statistical analysis using #rstats /R on unstructured text generated in real time by the social network Twitter. From an analytic point of view , Google Plus is an interesting social network , as it is a social network that is new and arrived after the analytic tools are relatively refined. It is thus an interesting use case for evolution of people behavior measured globally AFTER analytic tools in text mining are evolved and we can thus measure how people behave and that behavior varies as the social network and its user interface evolves.

And it would also be  a nice benchmark to do sentiment analysis across multiple social networks.

Some interesting use cases of using Twitter that have been used in R.

  • Using R to search Twitter for analysis
http://www.franklincenterhq.org/2429/using-r-to-search-twitter-for-analysis/
  • Text Data Mining With Twitter And R
  • TWITTER FROM R… SURE, WHY NOT!
  • A package called TwitteR
  • slides from my R tutorial on Twitter text mining #rstats
  • Generating graphs of retweets and @-messages on Twitter using R and Gephi
But with Google Plus API now active

The Console lets you see and manage the following project information:

  • Activated APIs – Activate one or more APIs to enable traffic monitoring, filtering, and billing, and API-specific pages for your project. Read more about activating APIs here.
  • Traffic information – The Console reports traffic information for each activated API. Additionally, you can cap or filter usage by API. Read more about traffic reporting and request filtering here.
  • Billing information – When you activate billing, your activated APIs can exceed the courtesy usage quota. Usage fees are billed to the Google Checkout account that you specify. Read more about billing here.
  • Project keys – Each project is identified by either an API key or an OAuth 2.0 token. Use this key/token in your API requests to identify the project, in order to record usage data, enforce your filtering restrictions, and bill usage to the proper project. You can use the Console to generate or revoke API keys or OAuth 2.0 certificates to use in your application. Read more about keys here.
  • Team members – You can specify additional members with read, write, or ownership access to this project’s Console page. Read more about team members here.
Google+ API Courtesy limit: 1,000 queries/day

Effective limits:

API Per-User Limit Used Courtesy Limit
Google+ API 5.0 requests/second/user 0% 1,000 queries/day
API Calls
Most of the Google+ API follows a RESTful API design, meaning that you use standard HTTP methods to retrieve and manipulate resources. For example, to get the profile of a user, you might send an HTTP request like:

GET https://www.googleapis.com/plus/v1/people/userId

Common Parameters

Different API methods require parameters to be passed either as part of the URL path or as query parameters. Additionally, there are a few parameters that are common to all API endpoints. These are all passed as optional query parameters.

Parameter Name

Value

Description

callback

string

Specifies a JavaScript function that will be passed the response data for using the API with JSONP.

fields

string

Selector specifying which fields to include in a partial response.

key

string

API key. Your API key identifies your project and provides you with API access, quota, and reports. Required unless you provide an OAuth 2.0 token.

access_token

string

OAuth 2.0 token for the current user. Learn more about OAuth.

prettyPrint

boolean

If set to “true”, data output will include line breaks and indentation to make it more readable. If set to “false”, unnecessary whitespace is removed, reducing the size of the response. Defaults to “true”.

userIp

string

Identifies the IP address of the end user for whom the API call is being made. This allows per-user quotas to be enforced when calling the API from a server-side application. Learn more about Capping Usage.

Data Formats

Resources in the Google+ API are represented using JSON data formats. For example, retrieving a user’s profile may result in a response like:

{
  "kind": "plus#person",
  "id": "118051310819094153327",
  "displayName": "Chirag Shah",
  "url": "https://plus.google.com/118051310819094153327",
  "image": {
    "url": "https://lh5.googleusercontent.com/-XnZDEoiF09Y/AAAAAAAAAAI/AAAAAAAAYCI/7fow4a2UTMU/photo.jpg"
  }
}

Common Properties

While each type of resource will have its own unique representation, there are a number of common properties that are found in almost all resource representations.

Property Name

Value

Description

displayName

string

This is the name of the resource, suitable for displaying to a user.

id

string

This property uniquely identifies a resource. Every resource of a given kind will have a unique id. Even though an id may sometimes look like a number, it should always be treated as a string.

kind

string

This identifies what kind of resource a JSON object represents. This is particularly useful when programmatically determining how to parse an unknown object.

url

string

This is the primary URL, or permalink, for the resource.

Pagination

In requests that can respond with potentially large collections, such as Activities list, each response contains a limited number of items, set by maxResults(default: 20). Each response also contains a nextPageToken property. To obtain the next page of items, you pass this value of nextPageToken to the pageTokenproperty of the next request. Repeat this process to page through the full collection.

For example, calling Activities list returns a response with nextPageToken:

{
  "kind": "plus#activityFeed",
  "title": "Plus Public Activities Feed",
  "nextPageToken": "CKaEL",
  "items": [
    {
      "kind": "plus#activity",
      "id": "123456789",
      ...
    },
    ...
  ]
  ...
}

To get the next page of activities, pass the value of this token in with your next Activities list request:

https://www.googleapis.com/plus/v1/people/me/activities/public?pageToken=CKaEL

As before, the response to this request includes nextPageToken, which you can pass in to get the next page of results. You can continue this cycle to get new pages — for the last page, “nextPageToken” will be absent.

 

it would be interesting the first wave of analysis on this new social network and see if it is any different from others, if at all.
After all, an API is only as good as the analysis and applications  that can be done on the data it provides

 

Funny Stuff on Google Plus

Here is more funny stuff on my Google Plus stream- you can now add me to a circle using the icon in the right margin.

0) Funny Cats are here to stay

1) So what?

Continue reading “Funny Stuff on Google Plus”

Revolution #Rstats Webinar

David Smith of Revo presents a nice webinar on the capabilities and abilities of Revolution R- if you are R curious and wonder how the commercial version has matured- you may want to take a look.

click below to view an executive Webinar

——————————————————————————————-

Revolution R Enterprise—presented by author and blogger David Smith:

Revolution R: 100% R and More
On-Demand Webinar

This Webinar covers how R users can upgrade to:

  • Multi-processor speed improvements and parallel processing
  • Productivity and debugging with an integrated development environment (IDE) for the R language
  • “Big Data” analysis, with out-of-memory storage of multi-gigabyte data sets
  • Web Services for R, to integrate R computations and graphics into 3rd-Party applications like Excel and BI Dashboards
  • Expert technical support and consulting services for R

This webinar will be of value to current R users who want to learn more about the additional capabilities of Revolution R Enterprise to enhance the productivity, ease of use, and enterprise readiness of open source R. R users in academia will also find this webinar valuable: we will explain how all members of the academic community can obtain Revolution R Enterprise free of charge.

—————————————————————————————

contact -1-855-GET-REVO or via online form.
info@revolutionanalytics.com | (650) 330-0553 | Twitter @RevolutionR