R for Predictive Modeling- PAW Toronto

A nice workshop on using R for Predictive Modeling by Max Kuhn Director, Nonclinical Statistics, Pfizer is on at PAW Toronto.

Workshop

Monday, April 23, 2012 in Toronto
Full-day: 9:00am – 4:30pm

R for Predictive Modeling:
A Hands-On Introduction

Intended Audience: Practitioners who wish to learn how to execute on predictive analytics by way of the R language; anyone who wants “to turn ideas into software, quickly and faithfully.”

Knowledge Level: Either hands-on experience with predictive modeling (without R) or hands-on familiarity with any programming language (other than R) is sufficient background and preparation to participate in this workshop.


What prior attendees have exclaimed


Workshop Description

This one-day session provides a hands-on introduction to R, the well-known open-source platform for data analysis. Real examples are employed in order to methodically expose attendees to best practices driving R and its rich set of predictive modeling packages, providing hands-on experience and know-how. R is compared to other data analysis platforms, and common pitfalls in using R are addressed.

The instructor, a leading R developer and the creator of CARET, a core R package that streamlines the process for creating predictive models, will guide attendees on hands-on execution with R, covering:

  • A working knowledge of the R system
  • The strengths and limitations of the R language
  • Preparing data with R, including splitting, resampling and variable creation
  • Developing predictive models with R, including decision trees, support vector machines and ensemble methods
  • Visualization: Exploratory Data Analysis (EDA), and tools that persuade
  • Evaluating predictive models, including viewing lift curves, variable importance and avoiding overfitting

Hardware: Bring Your Own Laptop
Each workshop participant is required to bring their own laptop running Windows or OS X. The software used during this training program, R, is free and readily available for download.

Attendees receive an electronic copy of the course materials and related R code at the conclusion of the workshop.


Schedule

  • Workshop starts at 9:00am
  • Morning Coffee Break at 10:30am – 11:00am
  • Lunch provided at 12:30 – 1:15pm
  • Afternoon Coffee Break at 2:30pm – 3:00pm
  • End of the Workshop: 4:30pm

Instructor

Max Kuhn, Director, Nonclinical Statistics, Pfizer

Max Kuhn is a Director of Nonclinical Statistics at Pfizer Global R&D in Connecticut. He has been applying models in the pharmaceutical industries for over 15 years.

He is a leading R developer and the author of several R packages including the CARET package that provides a simple and consistent interface to over 100 predictive models available in R.

Mr. Kuhn has taught courses on modeling within Pfizer and externally, including a class for the India Ministry of Information Technology.

Source-

http://www.predictiveanalyticsworld.com/toronto/2012/r_for_predictive_modeling.php

Book Review- Machine Learning for Hackers

This is review of the fashionably named book Machine Learning for Hackers by Drew Conway and John Myles White (O’Reilly ). The book is about hacking code in R.

 

The preface introduces the reader to the authors conception of what machine learning and hacking is all about. If the name of the book was machine learning for business analytsts or data miners, I am sure the content would have been unchanged though the popularity (and ambiguity) of the word hacker can often substitute for its usefulness. Indeed the many wise and learned Professors of statistics departments through out the civilized world would be mildly surprised and bemused by their day to day activities as hacking or teaching hackers. The book follows a case study and example based approach and uses the GGPLOT2 package within R programming almost to the point of ignoring any other native graphics system based in R. It can be quite useful for the aspiring reader who wishes to understand and join the booming market for skilled talent in statistical computing.

Chapter 1 has a very useful set of functions for data cleansing and formatting. It walks you through the basics of formatting based on dates and conditions, missing value and outlier treatment and using ggplot package in R for graphical analysis. The case study used is an Infochimps dataset with 60,000 recordings of UFO sightings. The case study is lucid, and done at a extremely helpful pace illustrating the powerful and flexible nature of R functions that can be used for data cleansing.The chapter mentions text editors and IDEs but fails to list them in a tabular format, while listing several other tables like Packages used in the book. It also jumps straight from installation instructions to functions in R without getting into the various kinds of data types within R or specifying where these can be referenced from. It thus assumes a higher level of basic programming understanding for the reader than the average R book.

Chapter 2 discusses data exploration, and has a very clear set of diagrams that explain the various data summary operations that are performed routinely. This is an innovative approach and will help students or newcomers to the field of data analysis. It introduces the reader to type determination functions, as well different kinds of encoding. The introduction to creating functions is quite elegant and simple , and numerical summary methods are explained adequately. While the chapter explains data exploration with the help of various histogram options in ggplot2 , it fails to create a more generic framework for data exploration or rules to assist the reader in visual data exploration in non standard data situations. While the examples are very helpful for a reader , there needs to be slightly more depth to step out of the example and into a framework for visual data exploration (or references for the same). A couple of case studies however elaborately explained cannot do justice to the vast field of data exploration and especially visual data exploration.

Chapter 3 discussed binary classification for the specific purpose for spam filtering using a dataset from SpamAssassin. It introduces the reader to the naïve Bayes classifier and the principles of text mining suing the tm package in R. Some of the example codes could have been better commented for easier readability in the book. Overall it is quite a easy tutorial for creating a naïve Bayes classifier even for beginners.

Chapter 4 discusses the issues in importance ranking and creating recommendation systems specifically in the case of ordering email messages into important and not important. It introduces the useful grepl, gsub, strsplit, strptime ,difftime and strtrim functions for parsing data. The chapter further introduces the reader to the concept of log (and affine) transformations in a lucid and clear way that can help even beginners learn this powerful transformation concept. Again the coding within this chapter is sparsely commented which can cause difficulties to people not used to learn reams of code. ( it may have been part of the code attached with the book, but I am reading an electronic book and I did not find an easy way to go back and forth between the code and the book). The readability of the chapters would be further enhanced by the use of flow charts explaining the path and process followed than overtly verbose textual descriptions running into multiple pages. The chapters are quite clearly written, but a helpful visual summary can help in both revising the concepts and elucidate the approach taken further.A suggestion for the authors could be to compile the list of useful functions they introduce in this book as a sort of reference card (or Ref Card) for R Hackers or atleast have a chapter wise summary of functions, datasets and packages used.

Chapter 5 discusses linear regression , and it is a surprising and not very good explanation of regression theory in the introduction to regression. However the chapter makes up in practical example what it oversimplifies in theory. The chapter on regression is not the finest chapter written in this otherwise excellent book. Part of this is because of relative lack of organization- correlation is explained after linear regression is explained. Once again the lack of a function summary and a process flow diagram hinders readability and a separate section on regression metrics that help make a regression result good or not so good could be a welcome addition. Functions introduced include lm.

Chapter 6 showcases Generalized Additive Model (GAM) and Polynomial Regression, including an introduction to singularity and of over-fitting. Functions included in this chapter are transform, and poly while the package glmnet is also used here. The chapter also introduces the reader formally to the concept of cross validation (though examples of cross validation had been introduced in earlier chapters) and regularization. Logistic regression is also introduced at the end in this chapter.

Chapter 7 is about optimization. It describes error metric in a very easy to understand way. It creates a grid by using nested loops for various values of intercept and slope of a regression equation and computing the sum of square of errors. It then describes the optim function in detail including how it works and it’s various parameters. It introduces the curve function. The chapter then describes ridge regression including definition and hyperparameter lamda. The use of optim function to optimize the error in regression is useful learning for the aspiring hacker. Lastly it describes a case study of breaking codes using the simplistic Caesar cipher, a lexical database and the Metropolis method. Functions introduced in this chapter include .Machine$double.eps .

Chapter 8 deals with Principal Component Analysis and unsupervised learning. It uses the ymd function from lubridate package to convert string to date objects, and the cast function from reshape package to further manipulate the structure of data. Using the princomp functions enables PCA in R.The case study creates a stock market index and compares the results with the Dow Jones index.

Chapter 9 deals with Multidimensional Scaling as well as clustering US senators on the basis of similarity in voting records on legislation .It showcases matrix multiplication using %*% and also the dist function to compute distance matrix.

Chapter 10 has the subject of K Nearest Neighbors for recommendation systems. Packages used include class ,reshape and and functions used include cor, function and log. It also demonstrates creating a custom kNN function for calculating Euclidean distance between center of centroids and data. The case study used is the R package recommendation contest on Kaggle. Overall a simplistic introduction to creating a recommendation system using K nearest neighbors, without getting into any of the prepackaged packages within R that deal with association analysis , clustering or recommendation systems.

Chapter 11 introduces the reader to social network analysis (and elements of graph theory) using the example of Erdos Number as an interesting example of social networks of mathematicians. The example of Social Graph API by Google for hacking are quite new and intriguing (though a bit obsolete by changes, and should be rectified in either the errata or next edition) . However there exists packages within R that should be atleast referenced or used within this chapter (like TwitteR package that use the Twitter API and ROauth package for other social networks). Packages used within this chapter include Rcurl, RJSONIO, and igraph packages of R and functions used include rbind and ifelse. It also introduces the reader to the advanced software Gephi. The last example is to build a recommendation engine for whom to follow in Twitter using R.

Chapter 12 is about model comparison and introduces the concept of Support Vector Machines. It uses the package e1071 and shows the svm function. It also introduces the concept of tuning hyper parameters within default algorithms . A small problem in understanding the concepts is the misalignment of diagram pages with the relevant code. It lastly concludes with using mean square error as a method for comparing models built with different algorithms.

 

Overall the book is a welcome addition in the library of books based on R programming language, and the refreshing nature of the flow of material and the practicality of it’s case studies make this a recommended addition to both academic and corporate business analysts trying to derive insights by hacking lots of heterogeneous data.

Have a look for yourself at-
http://shop.oreilly.com/product/0636920018483.do

Interview Prof Benjamin Alamar , Sports Analytics

Here is an interview with Prof Benjamin Alamar, founding editor of the Journal of Quantitative Analysis in Sport, a professor of sports management at Menlo College and the Director of Basketball Analytics and Research for the Oklahoma City Thunder of the NBA.

Ajay – The movie Moneyball recently sparked out mainstream interest in analytics in sports.Describe the role of analytics in sports management

Benjamin- Analytics is impacting sports organizations on both the sport and business side.
On the Sport side, teams are using analytics, including advanced data management, predictive anlaytics, and information systems to gain a competitive edge. The use of analytics results in more accurate player valuations and projections, as well as determining effective strategies against specific opponents.
On the business side, teams are using the tools of analytics to increase revenue in a variety of ways including dynamic ticket pricing and optimizing of the placement of concession stands.
Ajay-  What are the ways analytics is used in specific sports that you have been part of?

Benjamin- A very typical first step for a team is to utilize the tools of predictive analytics to help inform their draft decisions.

Ajay- What are some of the tools, techniques and software that analytics in sports uses?
Benjamin- The tools of sports analytics do not differ much from the tools of business analytics. Regression analysis is fairly common as are other forms of data mining. In terms of software, R is a popular tool as is Excel and many of the other standard analysis tools.
Ajay- Describe your career journey and how you became involved in sports management. What are some of the tips you want to tell young students who wish to enter this field?

Benjamin- I got involved in sports through a company called Protrade Sports. Protrade initially was a fantasy sports company that was looking to develop a fantasy game based on advanced sports statistics and utilize a stock market concept instead of traditional drafting. I was hired due to my background in economics to develop the market aspect of the game.

There I met Roland Beech (who now works for the Mavericks) and Aaron Schatz (owner of footballoutsiders.com) and learned about the developing field of sports statistics. I then changed my research focus from economics to sports statistics and founded the Journal of Quantitative Analysis in Sports. Through the journal and my published research, I was able to establish a reputation of doing quality, useable work.

For students, I recommend developing very strong data management skills (sql and the like) and thinking carefully about what sort of questions a general manager or coach would care about. Being able to demonstrate analytic skills around actionable research will generally attract the attention of pro teams.

About-

Benjamin Alamar, Professor of Sport Management, Menlo College

Benjamin Alamar

Professor Benjamin Alamar is the founding editor of the Journal of Quantitative Analysis in Sport, a professor of sports management at Menlo College and the Director of Basketball Analytics and Research for the Oklahoma City Thunder of the NBA. He has published academic research in football, basketball and baseball, has presented at numerous conferences on sports analytics. He is also a co-creator of ESPN’s Total Quarterback Rating and a regular contributor to the Wall Street Journal. He has consulted for teams in the NBA and NFL, provided statistical analysis for author Michael Lewis for his recent book The Blind Side, and worked with numerous startup companies in the field of sports analytics. Professor Alamar is also an award winning economist who has worked academically and professionally in intellectual property valuation, public finance and public health. He received his PhD in economics from the University of California at Santa Barbara in 2001.

Prof Alamar is a speaker at Predictive Analytics World, San Fransisco and is doing a workshop there

http://www.predictiveanalyticsworld.com/sanfrancisco/2012/agenda.php#day2-17

2:55-3:15pm

All level tracks Track 1: Sports Analytics
Case Study: NFL, MLB, & NBA
Competing & Winning with Sports Analytics

The field of sports analytics ties together the tools of data management, predictive modeling and information systems to provide sports organization a competitive advantage. The field is rapidly developing based on new and expanded data sources, greater recognition of the value, and past success of a variety of sports organizations. Teams in the NFL, MLB, NBA, as well as other organizations have found a competitive edge with the application of sports analytics. The future of sports analytics can be seen through drawing on these past successes and the developments of new tools.

You can know more about Prof Alamar at his blog http://analyticfootball.blogspot.in/ or journal at http://www.degruyter.com/view/j/jqas. His detailed background can be seen at http://menlo.academia.edu/BenjaminAlamar/CurriculumVitae

Statistical Theory for High Performance Analytics

A thing that strikes me when I was a student of statistics is that most theories of sampling, testing of hypothesis and modeling were built in an age where data was predominantly insufficient, computation was inherently manual and results of tests aimed at large enough differences.

I look now at the explosion of data, at the cloud computing enabled processing power on demand, and competitive dynamics of businesses to venture out my opinion-

1) We now have large , even excess data than we had before for statisticians a generation ago.

2) We now have extremely powerful computing devices, provided we can process our algorithms in parallel.

3) Even a slight uptick in modeling efficiency or mild uptick in business insight can provide huge monetary savings.

Call it High Performance Analytics or Big Data or Cloud Computing- are we sure statisticians are creating enough mathematical theory or are we just taking it easy in our statistics classrooms only to be subjected to something completely different when we hit the analytics workplace.

Do we  need more theorists as well? Is there ANY incentive for corporations with private R and D research teams to share their latest cutting edge theoretical work outside their corporate silo.

 

Related-

“a mathematician is a machine for turning coffee into theorems

Interview Kelci Miclaus, SAS Institute Using #rstats with JMP

Here is an interview with Kelci Miclaus, a researcher working with the JMP division of the SAS Institute, in which she demonstrates examples of how the R programming language is a great hit with JMP customers who like to be flexible.

 

Ajay- How has JMP been using integration with R? What has been the feedback from customers so far? Is there a single case study you can point out where the combination of JMP and R was better than any one of them alone?

Kelci- Feedback from customers has been very positive. Some customers are using JMP to foster collaboration between SAS and R modelers within their organizations. Many are using JMP’s interactive visualization to complement their use of R. Many SAS and JMP users are using JMP’s integration with R to experiment with more bleeding-edge methods not yet available in commercial software. It can be used simply to smooth the transition with regard to sending data between the two tools, or used to build complete custom applications that take advantage of both JMP and R.

One customer has been using JMP and R together for Bayesian analysis. He uses R to create MCMC chains and has found that JMP is a great tool for preparing the data for analysis, as well as displaying the results of the MCMC simulation. For example, the Control Chart platform and the Bubble Plot platform in JMP can be used to quickly verify convergence of the algorithm. The use of both tools together can increase productivity since the results of an analysis can be achieved faster than through scripting and static graphics alone.

I, along with a few other JMP developers, have written applications that use JMP scripting to call out to R packages and perform analyses like multidimensional scaling, bootstrapping, support vector machines, and modern variable selection methods. These really show the benefit of interactive visual analysis of coupled with modern statistical algorithms. We’ve packaged these scripts as JMP add-ins and made them freely available on our JMP User Community file exchange. Customers can download them and now employ these methods as they would a regular JMP platform. We hope that our customers familiar with scripting will also begin to contribute their own add-ins so a wider audience can take advantage of these new tools.

(see http://www.decisionstats.com/jmp-and-r-rstats/)

Ajay- Are there plans to extend JMP integration with other languages like Python?

Kelci- We do have plans to integrate with other languages and are considering integrating with more based on customer requests. Python has certainly come up and we are looking into possibilities there.

 Ajay- How is R a complimentary fit to JMP’s technical capabilities?

Kelci- R has an incredible breadth of capabilities. JMP has extensive interactive, dynamic visualization intrinsic to its largely visual analysis paradigm, in addition to a strong core of statistical platforms. Since our brains are designed to visually process pictures and animated graphs more efficiently than numbers and text, this environment is all about supporting faster discovery. Of course, JMP also has a scripting language (JSL) allowing you to incorporate SAS code, R code, build analytical applications for others to leverage SAS, R and other applications for users who don’t code or who don’t want to code.

JSL is a powerful scripting language on its own. It can be used for dialog creation, automation of JMP statistical platforms, and custom graphic scripting. In other ways, JSL is very similar to the R language. It can also be used for data and matrix manipulation and to create new analysis functions. With the scripting capabilities of JMP, you can create custom applications that provide both a user interface and an interactive visual back-end to R functionality. Alternatively, you could create a dashboard using statistical and/or graphical platforms in JMP to explore the data and with the click of a button, send a portion of the data to R for further analysis.

Another JMP feature that complements R is the add-in architecture, which is similar to how R packages work. If you’ve written a cool script or analysis workflow, you can package it into a JMP add-in file and send it to your colleagues so they can easily use it.

Ajay- What is the official view on R from your organization? Do you think it is a threat, or a complimentary product or another statistical platform that coexists with your offerings?

Kelci- Most definitely, we view R as complimentary. R contributors are providing a tremendous service to practitioners, allowing them to try a wide variety of methods in the pursuit of more insight and better results. The R community as a whole is providing a valued role to the greater analytical community by focusing attention on newer methods that hold the most promise in so many application areas. Data analysts should be encouraged to use the tools available to them in order to drive discovery and JMP can help with that by providing an analytic hub that supports both SAS and R integration.

Ajay-  While you do use R, are there any plans to give back something to the R community in terms of your involvement and participation (say at useR events) or sponsoring contests.

 Kelci- We are certainly open to participating in useR groups. At Predictive Analytics World in NY last October, they didn’t have a local useR group, but they did have a Predictive Analytics Meet-up group comprised of many R users. We were happy to sponsor this. Some of us within the JMP division have joined local R user groups, myself included.  Given that some local R user groups have entertained topics like Excel and R, Python and R, databases and R, we would be happy to participate more fully here. I also hope to attend the useR! annual meeting later this year to gain more insight on how we can continue to provide tools to help both the JMP and R communities with their work.

We are also exploring options to sponsor contests and would invite participants to use their favorite tools, languages, etc. in pursuit of the best model. Statistics is about learning from data and this is how we make the world a better place.

About- Kelci Miclaus

Kelci is a research statistician developer for JMP Life Sciences at SAS Institute. She has a PhD in Statistics from North Carolina State University and has been using SAS products and R for several years. In addition to research interests in statistical genetics, clinical trials analysis, and multivariate analysis/visualization methods, Kelci works extensively with JMP, SAS, and R integration.

.

 

Timo Elliott on 2012

Continuing the DecisionStats series on  trends for 2012, Timo Elliott , Technology Evangelist  at SAP Business Objects, looks at the predictions he made in the beginning of  2011 and follows up with the things that surprised him in 2011, and what he foresees in 2012.

You can read last year’s predictions by Mr Elliott at http://www.decisionstats.com/brief-interview-timo-elliott/

Timo- Here are my comments on the “top three analytics trends” predictions I made last year:

(1) Analytics, reinvented. New DW techniques make it possible to do sub-second, interactive analytics directly against row-level operational data. Now BI processes and interfaces need to be rethought and redesigned to make best use of this — notably by blurring the distinctions between the “design” and “consumption” phases of BI.

I spent most of 2011 talking about this theme at various conferences: how existing BI technology israpidly becoming obsolete and how the changes are akin to the move from film to digital photography. Technology that has been around for many years (in-memory, column stores, datawarehouse appliances, etc.) came together to create exciting new opportunities and even generally-skeptical industry analysts put out press releases such as “Gartner Says Data Warehousing Reaching Its Most Significant Inflection Point Since Its Inception.” Some of the smaller BI vendors had been pushing in-memory analytics for years, but the general market started paying more attention when megavendors like SAP started painting a long-term vision of in-memory becoming a core platform for applications, not just analytics. Database leader Oracle was forced to upgrade their in-memory messaging from “It’s a complete fantasy” to “we have that too”.

(2) Corporate and personal BI come together. The ability to mix corporate and personal data for quick, pragmatic analysis is a common business need. The typical solution to the problem — extracting and combining the data into a local data store (either Excel or a departmental data mart) — pleases users, but introduces duplication and extra costs and makes a mockery of information governance. 2011 will see the rise of systems that let individuals and departments load their data into personal spaces in the corporate environment, allowing pragmatic analytic flexibility without compromising security and governance.

The number of departmental “data discovery” initiatives continued to rise through 2011, but new tools do make it easier for business people to upload and manipulate their own information while using the corporate standards. 2012 will see more development of “enterprise data discovery” interfaces for casual users.

(3) The next generation of business applications. Where are the business applications designed to support what people really do all day, such as implementing this year’s strategy, launching new products, or acquiring another company? 2011 will see the first prototypes of people-focused, flexible, information-centric, and collaborative applications, bringing together the best of business intelligence, “enterprise 2.0”, and existing operational applications.

2011 saw the rise of sophisticated, user-centric mobile applications that combine data from corporate systems with GPS mapping and the ability to “take action”, such as mobile medical analytics for doctors or mobile beauty advisor applications, and collaborative BI started becoming a standard part of enterprise platforms.

And one that should happen, but probably won’t: (4) Intelligence = Information + PEOPLE. Successful analytics isn’t about technology — it’s about people, process, and culture. The biggest trend in 2011 should be organizations spending the majority of their efforts on user adoption rather than technical implementation.

Unsurprisingly, there was still high demand for presentations on why BI projects fail and how to implement BI competency centers.  The new architectures probably resulted in even more emphasis on technology than ever, while business peoples’ expectations skyrocketed, fueled by advances in the consumer world. The result was probably even more dissatisfaction in the past, but the benefits of the new architectures should start becoming clearer during 2012.

What surprised me the most:

The rapid rise of Hadoop / NoSQL. The potentials of the technology have always been impressive, but I was surprised just how quickly these technology has been used to address real-life business problems (beyond the “big web” vendors where it originated), and how quickly it is becoming part of mainstream enterprise analytic architectures (e.g. Sybase IQ 15.4 includes native MapReduce APIs, Hadoop integration and federation, etc.)

Prediction for 2012:

As I sat down to gather my thoughts about BI in 2012, I quickly came up with the same long laundry list of BI topics as everybody else: in-memory, mobile, predictive, social, collaborative decision-making, data discovery, real-time, etc. etc.  All of these things are clearly important, and where going to continue to see great improvements this year. But I think that the real “next big thing” in BI is what I’m seeing when I talk to customers: they’re using these new opportunities not only to “improve analytics” but also fundamentally rethink some of their key business processes.

Instead of analytics being something that is used to monitor and eventually improve a business process, analytics is becoming a more fundamental part of the business process itself. One example is a large telco company that has transformed the way they attract customers. Instead of laboriously creating a range of rate plans, promoting them, and analyzing the results, they now use analytics to automatically create hundreds of more complex, personalized rate plans. They then throw them out into the market, monitor in real time, and quickly cull any that aren’t successful. It’s a way of doing business that would have been inconceivable in the past, and a lot more common in the future.

 

About

 

Timo Elliott

Timo Elliott is a 20-year veteran of SAP BusinessObjects, and has spent the last quarter-century working with customers around the world on information strategy.

He works closely with SAP research and innovation centers around the world to evangelize new technology prototypes.

His popular Business Analytics blog tracks innovation in analytics and social media, including topics such as augmented corporate reality, collaborative decision-making, and social network analysis.

His PowerPoint Twitter Tools lets presenters see and react to tweets in real time, embedded directly within their slides.

A popular and engaging speaker, Elliott presents regularly to IT and business audiences at international conferences, on subjects such as why BI projects fail and what to do about it, and the intersection of BI and enterprise 2.0.

Prior to Business Objects, Elliott was a computer consultant in Hong Kong and led analytics projects for Shell in New Zealand. He holds a first-class honors degree in Economics with Statistics from Bristol University, England

Timo can be contacted via Twitter at https://twitter.com/timoelliott

 Part 1 of this series was from James Kobielus, Forrestor at http://www.decisionstats.com/jim-kobielus-on-2012/

PMML Augustus

Here is a new-old system in open source for

for building and scoring statistical models designed to work with data sets that are too large to fit into memory.

http://code.google.com/p/augustus/

Augustus is an open source software toolkit for building and scoring statistical models. It is written in Python and its
most distinctive features are:
• Ability to be used on sets of big data; these are data sets that exceed either memory capacity or disk capacity, so
that existing solutions like R or SAS cannot be used. Augustus is also perfectly capable of handling problems
that can fit on one computer.
• PMML compliance and the ability to both:
– produce models with PMML-compliant formats (saved with extension .pmml).
– consume models from files with the PMML format.
Augustus has been tested and deployed on serveral operating systems. It is intended for developers who work in the
financial or insurance industry, information technology, or in the science and research communities.
Usage
Augustus produces and consumes Baseline, Cluster, Tree, and Ruleset models. Currently, it uses an event-based
approach to building Tree, Cluster and Ruleset models that is non-standard.

New to PMML ?

Read on http://code.google.com/p/augustus/wiki/PMML

The Predictive Model Markup Language or PMML is a vendor driven XML markup language for specifying statistical and data mining models. In other words, it is an XML language so that Continue reading “PMML Augustus”

%d bloggers like this: