Oracle launches its version of R #rstats

From-

http://www.oracle.com/us/corporate/press/1515738

Integrates R Statistical Programming Language into Oracle Database 11g

News Facts

Oracle today announced the availability of Oracle Advanced Analytics, a new option for Oracle Database 11g that bundles Oracle R Enterprise together with Oracle Data Mining.
Oracle R Enterprise delivers enterprise class performance for users of the R statistical programming language, increasing the scale of data that can be analyzed by orders of magnitude using Oracle Database 11g.
R has attracted over two million users since its introduction in 1995, and Oracle R Enterprise dramatically advances capability for R users. Their existing R development skills, tools, and scripts can now also run transparently, and scale against data stored in Oracle Database 11g.
Customer testing of Oracle R Enterprise for Big Data analytics on Oracle Exadata has shown up to 100x increase in performance in comparison to their current environment.
Oracle Data Mining, now part of Oracle Advanced Analytics, helps enable customers to easily build and deploy predictive analytic applications that help deliver new insights into business performance.
Oracle Advanced Analytics, in conjunction with Oracle Big Data ApplianceOracle Exadata Database Machine and Oracle Exalytics In-Memory Machine, delivers the industry’s most integrated and comprehensive platform for Big Data analytics.

Comprehensive In-Database Platform for Advanced Analytics

Oracle Advanced Analytics brings analytic algorithms to data stored in Oracle Database 11g and Oracle Exadata as opposed to the traditional approach of extracting data to laptops or specialized servers.
With Oracle Advanced Analytics, customers have a comprehensive platform for real-time analytic applications that deliver insight into key business subjects such as churn prediction, product recommendations, and fraud alerting.
By providing direct and controlled access to data stored in Oracle Database 11g, customers can accelerate data analyst productivity while maintaining data security throughout the enterprise.
Powered by decades of Oracle Database innovation, Oracle R Enterprise helps enable analysts to run a variety of sophisticated numerical techniques on billion row data sets in a matter of seconds making iterative, speed of thought, and high-quality numerical analysis on Big Data practical.
Oracle R Enterprise drastically reduces the time to deploy models by eliminating the need to translate the models to other languages before they can be deployed in production.
Oracle R Enterprise integrates the extensive set of Oracle Database data mining algorithms, analytics, and access to Oracle OLAP cubes into the R language for transparent use by R users.
Oracle Data Mining provides an extensive set of in-database data mining algorithms that solve a wide range of business problems. These predictive models can be deployed in Oracle Database 11g and use Oracle Exadata Smart Scan to rapidly score huge volumes of data.
The tight integration between R, Oracle Database 11g, and Hadoop enables R users to write one R script that can run in three different environments: a laptop running open source R, Hadoop running with Oracle Big Data Connectors, and Oracle Database 11g.
Oracle provides single vendor support for the entire Big Data platform spanning the hardware stack, operating system, open source R, Oracle R Enterprise and Oracle Database 11g.
To enable easy enterprise-wide Big Data analysis, results from Oracle Advanced Analytics can be viewed from Oracle Business Intelligence Foundation Suite and Oracle Exalytics In-Memory Machine.

Supporting Quotes

“Oracle is committed to meeting the challenges of Big Data analytics. By building upon the analytical depth of Oracle SQL, Oracle Data Mining and the R environment, Oracle is delivering a scalable and secure Big Data platform to help our customers solve the toughest analytics problems,” said Andrew Mendelsohn, senior vice president, Oracle Server Technologies.
“We work with leading edge customers who rely on us to deliver better BI from their Oracle Databases. The new Oracle R Enterprise functionality allows us to perform deep analytics on Big Data stored in Oracle Databases. By leveraging R and its library of open source contributed CRAN packages combined with the power and scalability of Oracle Database 11g, we can now do that,” said Mark Rittman, co-founder, Rittman Mead.
Oracle Advanced Analytics — an option to Oracle Database 11g Enterprise Edition – extends the database into a comprehensive advanced analytics platform through two major components: Oracle R Enterprise and Oracle Data Mining. With Oracle Advanced Analytics, customers have a comprehensive platform for real-time analytic applications that deliver insight into key business subjects such as churn prediction, product recommendations, and fraud alerting.

Oracle R Enterprise tightly integrates the open source R programming language with the database to further extend the database with Rs library of statistical functionality, and pushes down computations to the database. Oracle R Enterprise dramatically advances the capability for R users, and allows them to use their existing R development skills and tools, and scripts can now also run transparently and scale against data stored in Oracle Database 11g.

Oracle Data Mining provides powerful data mining algorithms that run as native SQL functions for in-database model building and model deployment. It can be accessed through the SQL Developer extension Oracle Data Miner to build, evaluate, share and deploy predictive analytics methodologies. At the same time the high-performance Oracle-specific data mining algorithms are accessible from R.

BENEFITS

  • Scalability—Allows customers to easily scale analytics as data volume increases by bringing the algorithms to where the data resides – in the database
  • Performance—With analytical operations performed in the database, R users can take advantage of the extreme performance of Oracle Exadata
  • Security—Provides data analysts with direct but controlled access to data in Oracle Database 11g, accelerating data analyst productivity while maintaining data security
  • Save Time and Money—Lowers overall TCO for data analysis by eliminating data movement and shortening the time it takes to transform “raw data” into “actionable information”
Oracle R Hadoop Connector Gives R users high performance native access to Hadoop Distributed File System (HDFS) and MapReduce programming framework.
This is a  R package
From the datasheet at

Timo Elliott on 2012

Continuing the DecisionStats series on  trends for 2012, Timo Elliott , Technology Evangelist  at SAP Business Objects, looks at the predictions he made in the beginning of  2011 and follows up with the things that surprised him in 2011, and what he foresees in 2012.

You can read last year’s predictions by Mr Elliott at http://www.decisionstats.com/brief-interview-timo-elliott/

Timo- Here are my comments on the “top three analytics trends” predictions I made last year:

(1) Analytics, reinvented. New DW techniques make it possible to do sub-second, interactive analytics directly against row-level operational data. Now BI processes and interfaces need to be rethought and redesigned to make best use of this — notably by blurring the distinctions between the “design” and “consumption” phases of BI.

I spent most of 2011 talking about this theme at various conferences: how existing BI technology israpidly becoming obsolete and how the changes are akin to the move from film to digital photography. Technology that has been around for many years (in-memory, column stores, datawarehouse appliances, etc.) came together to create exciting new opportunities and even generally-skeptical industry analysts put out press releases such as “Gartner Says Data Warehousing Reaching Its Most Significant Inflection Point Since Its Inception.” Some of the smaller BI vendors had been pushing in-memory analytics for years, but the general market started paying more attention when megavendors like SAP started painting a long-term vision of in-memory becoming a core platform for applications, not just analytics. Database leader Oracle was forced to upgrade their in-memory messaging from “It’s a complete fantasy” to “we have that too”.

(2) Corporate and personal BI come together. The ability to mix corporate and personal data for quick, pragmatic analysis is a common business need. The typical solution to the problem — extracting and combining the data into a local data store (either Excel or a departmental data mart) — pleases users, but introduces duplication and extra costs and makes a mockery of information governance. 2011 will see the rise of systems that let individuals and departments load their data into personal spaces in the corporate environment, allowing pragmatic analytic flexibility without compromising security and governance.

The number of departmental “data discovery” initiatives continued to rise through 2011, but new tools do make it easier for business people to upload and manipulate their own information while using the corporate standards. 2012 will see more development of “enterprise data discovery” interfaces for casual users.

(3) The next generation of business applications. Where are the business applications designed to support what people really do all day, such as implementing this year’s strategy, launching new products, or acquiring another company? 2011 will see the first prototypes of people-focused, flexible, information-centric, and collaborative applications, bringing together the best of business intelligence, “enterprise 2.0”, and existing operational applications.

2011 saw the rise of sophisticated, user-centric mobile applications that combine data from corporate systems with GPS mapping and the ability to “take action”, such as mobile medical analytics for doctors or mobile beauty advisor applications, and collaborative BI started becoming a standard part of enterprise platforms.

And one that should happen, but probably won’t: (4) Intelligence = Information + PEOPLE. Successful analytics isn’t about technology — it’s about people, process, and culture. The biggest trend in 2011 should be organizations spending the majority of their efforts on user adoption rather than technical implementation.

Unsurprisingly, there was still high demand for presentations on why BI projects fail and how to implement BI competency centers.  The new architectures probably resulted in even more emphasis on technology than ever, while business peoples’ expectations skyrocketed, fueled by advances in the consumer world. The result was probably even more dissatisfaction in the past, but the benefits of the new architectures should start becoming clearer during 2012.

What surprised me the most:

The rapid rise of Hadoop / NoSQL. The potentials of the technology have always been impressive, but I was surprised just how quickly these technology has been used to address real-life business problems (beyond the “big web” vendors where it originated), and how quickly it is becoming part of mainstream enterprise analytic architectures (e.g. Sybase IQ 15.4 includes native MapReduce APIs, Hadoop integration and federation, etc.)

Prediction for 2012:

As I sat down to gather my thoughts about BI in 2012, I quickly came up with the same long laundry list of BI topics as everybody else: in-memory, mobile, predictive, social, collaborative decision-making, data discovery, real-time, etc. etc.  All of these things are clearly important, and where going to continue to see great improvements this year. But I think that the real “next big thing” in BI is what I’m seeing when I talk to customers: they’re using these new opportunities not only to “improve analytics” but also fundamentally rethink some of their key business processes.

Instead of analytics being something that is used to monitor and eventually improve a business process, analytics is becoming a more fundamental part of the business process itself. One example is a large telco company that has transformed the way they attract customers. Instead of laboriously creating a range of rate plans, promoting them, and analyzing the results, they now use analytics to automatically create hundreds of more complex, personalized rate plans. They then throw them out into the market, monitor in real time, and quickly cull any that aren’t successful. It’s a way of doing business that would have been inconceivable in the past, and a lot more common in the future.

 

About

 

Timo Elliott

Timo Elliott is a 20-year veteran of SAP BusinessObjects, and has spent the last quarter-century working with customers around the world on information strategy.

He works closely with SAP research and innovation centers around the world to evangelize new technology prototypes.

His popular Business Analytics blog tracks innovation in analytics and social media, including topics such as augmented corporate reality, collaborative decision-making, and social network analysis.

His PowerPoint Twitter Tools lets presenters see and react to tweets in real time, embedded directly within their slides.

A popular and engaging speaker, Elliott presents regularly to IT and business audiences at international conferences, on subjects such as why BI projects fail and what to do about it, and the intersection of BI and enterprise 2.0.

Prior to Business Objects, Elliott was a computer consultant in Hong Kong and led analytics projects for Shell in New Zealand. He holds a first-class honors degree in Economics with Statistics from Bristol University, England

Timo can be contacted via Twitter at https://twitter.com/timoelliott

 Part 1 of this series was from James Kobielus, Forrestor at http://www.decisionstats.com/jim-kobielus-on-2012/

Jim Kobielus on 2012

Jim Kobielus revisits the predictions he made in 2011 (and a summary of 2010) , and makes some fresh ones for 2012. For technology watchers, this is an article by one of the gurus of enterprise software.

 

All of those trends predictions (at http://www.decisionstats.com/brief-interview-with-james-g-kobielus/ ) came true in 2011, and are in full force in 2012 as well.Here are my predictions for 2012, and the links to the 3 blogposts in which I made them last month:

 

The Year Ahead in Next Best Action? Here’s the Next Best Thing to a Crystal Ball!

  • The next-best-action market will continue to coalesce around core solution capabilities.
  • Data scientists will become the principal application developers for next best action.
  • Real-world experiments will become the new development paradigm in next best action.

The Year Ahead in Advanced Analytics? Advances on All Fronts!

  • Open-source platforms will expand their footprint in advanced analytics.
  • Data science centers of excellence will spring up everywhere.
  • Predictive analytics and interactive exploration will enter the mainstream BI user experience:

The Year Ahead In Big Data? Big, Cool, New Stuff Looms Large!

  • Enterprise Hadoop deployments will expand at a rapid clip.
  • In-memory analytics platforms will grow their footprint.
  • Graph databases will come into vogue.

 

And in an exclusive and generous favor for DecisionStats, Jim does some crystal gazing for the cloud computing field in 2012-

Cloud/SaaS EDWs will cross the enterprise-adoption inflection point. In 2012, cloud and software-as-a-service (SaaS) enterprise data warehouses (EDWs), offered on a public subscription basis, will gain greater enterprise adoption as a complement or outright replacement for appliance- and software-based EDWs. A growing number of established and startup EDW vendors will roll out cloud/SaaS “Big Data” offerings. Many of these will supplement and extend RDBMS and columnar technologies with Hadoop, key-value, graph, document, and other new database architectures.

About-

http://www.forrester.com/rb/analyst/james_kobielus

James G. Kobielus James G. Kobielus
Senior Analyst

RESEARCH FOCUS

 

James serves Business Process & Application Development & Delivery Professionals. He is a leading expert on data warehousing, predictive analytics, data mining, and complex event processing. In addition to his core coverage areas, James contributes to Forrester’s research in business intelligence, data integration, data quality, and master data management.

 

PREVIOUS WORK EXPERIENCE

 

James has a long history in IT research and consulting and has worked for both vendors and research firms. Most recently, he was at Current Analysis, an IT research firm, where he was a principal analyst covering topics ranging from data warehousing to data integration and the Semantic Web. Prior to that position, James was a senior technical systems analyst at Exostar (a hosted supply chain management and eBusiness hub for the aerospace and defense industry). In this capacity, James was responsible for identifying and specifying product/service requirements for federated identity, PKI, and other products. He also worked as an analyst for the Burton Group and was previously employed by LCC International, DynCorp, ADEENA, International Center for Information Technologies, and the North American Telecommunications Association. He is both well versed and experienced in product and market assessments. James is a widely published business/technology author and has spoken at many industry events.

Contact –

Twitter: http://twitter.com/jameskobielus

Announcing Jaspersoft 4.5

Message from  Jaspersoft

————————–

Announcing Jaspersoft 4.5:
Powerful Analytics for All Your Data

This new release provides a single, easy-to-use environment designed with the non-technical user in mind — delivering insight to data stored in relational, OLAP, and Big Data environments.New in Jaspersoft 4.5

Broad and Deep Big Data Connectivity
Intuitive drag and drop web UI for performing reporting and analysis against Hadoop, MongoDB, Cassandra, and many more.

Improved Ad Hoc Reporting and Analysis
Non-technical users can perform their own investigation.

Supercharged Analytic Performance
Enhanced push-down query processing and In-Memory Analysis engine improves response times for aggregation and summary queries.

Join us for an in-depth review and demo, showcasing the new features for self-service BI across any data source.

For more information on Jaspersoft 4.5, or any Jaspersoft solution, contact at sales@jaspersoft.com, or            415-348-2380      .

 

Download Jaspersoft 4.5 Today.

. Download your free 30 day evaluation trial now.

download now button

 

 

Webinar: Using R within Oracle #rstats

Webinar: Using R within Oracle — Nov 30, noon EST

==========================================
Oracle now supports the R open source statistical programming language. Come to this webinar to learn more about using R within an Oracle environment.

— URL for TechCast: https://stbeehive.oracle.com/bconf/confDetails?confID=334B:3BF0:owch:38893C00F42F38A1E0404498C8A6612B0004075AECF7&guest=true&confKey=608880
— Web Conference ID: 303397
— Web Conference Key: 608880
— Dialup:             1-866-682-4770      , ID 5548204, passcode 1234

After a steady rise in the past few years, in 2010 the open source data mining software R overtook other tools to become the tool used by more data miners (43%) than any other (http://www.rexeranalytics.com/Data-Miner-Survey-Results-2010.html).

Several analytic tool vendors have added R-integration to their software. However, Oracle is the largest company to throw their weight behind R. On October 3, Oracle unveiled their integration of R: Oracle R Enterprise (http://www.oracle.com/us/corporate/features/features-oracle-r-enterprise-498732.html) as part of their Oracle Big Data Appliance announcement (http://www.oracle.com/us/corporate/press/512001).

Oracle R Enterprise allows users to perform statistical analysis with advanced visualization on data stored in Oracle Database. Oracle R Enterprise enables scalable R solutions, while facilitating production deployment of R scripts and Hadoop based solutions, as well as integration of R results with Oracle BI Publisher and OBIEE dashboards.

This TechCast introduces the various Oracle R Enterprise components and features, along with R script demonstrations that interface with Oracle Database.

TechCast presenter: Mark Hornick, Senior Manager, Oracle Advanced Analytics Development.
This TechCast is part of the ongoing TechCasts series coordinated by Oracle BIWA: The BI, Warehousing and Analytics SIG (http://www.oracleBIWA.org).

Jaspersoft releasing new version – 4.2

Jaspersoft is planning to launch its version 4.2 to the world.

http://www.jaspersoft.com/event/upcoming-webinar-introducing-jaspersoft-42?elq=c0e7a97601f84a8399b1abc5cc84bbe5

Upcoming Webinar: Introducing Jaspersoft 4.2

Webinar

Date: September 29, 2011
Time: 10:00 AM PT/1:00 PM ET
Duration: 60 minutes
Language: English

Whether your building business intelligence (BI) solutions for your organization or for your customers, one thing is likely: your users want access to information anytime, anywhere. The challenge is getting the right information, to the right person, on the right device, without breaking your budget.

You can see precisely what we mean at the Jaspersoft 4.2 launch webinar on Thursday, September 29th.

Join us and see how Jaspersoft 4.2 can deliver superior choice for organizations looking to deliver information to end users, wherever they are.  Jaspersoft is focused on providing modern, usable, affordable BI for everyone.
●      Discover the new product capabilities that will improve BI access for your users
●      See Jaspersoft 4.2 live demos
●      Join Japersoft experts and fellow technology professionals in a real-time, interactive discussion.

Register to reserve your seat, today!

Interview Eberhard Miethke and Dr. Mamdouh Refaat, Angoss Software

Here is an interview with Eberhard Miethke and Dr. Mamdouh Refaat, of Angoss Software. Angoss is a global leader in delivering business intelligence software and predictive analytics solutions that help businesses capitalize on their data by uncovering new opportunities to increase sales and profitability and to reduce risk.

Ajay-  Describe your personal journey in software. How can we guide young students to pursue more useful software development than just gaming applications.

 Mamdouh- I started using computers long time ago when they were programmed using punched cards! First in Fortran, then C, later C++, and then the rest. Computers and software were viewed as technical/engineering tools, and that’s why we can still see the heavy technical orientation of command languages such as Unix shells and even in the windows Command shell. However, with the introduction of database systems and Microsoft office apps, it was clear that business will be the primary user and field of application for software. My personal trip in software started with scientific applications, then business and database systems, and finally statistical software – which you can think of it as returning to the more scientific orientation. However, with the wide acceptance of businesses of the application of statistical methods in different fields such as marketing and risk management, it is a fast growing field that in need of a lot of innovation.

Ajay – Angoss makes multiple data mining and analytics products. could you please introduce us to your product portfolio and what specific data analytics need they serve.

a- Attached please find our main product flyers for KnowledgeSTUDIO and KnowledgeSEEKER. We have a 3rd product called “strategy builder” which is an add-on to the decision tree modules. This is also described in the flyer.

(see- Angoss Knowledge Studio Product Guide April2011  and http://www.scribd.com/doc/63176430/Angoss-Knowledge-Seeker-Product-Guide-April2011  )

Ajay-  The trend in analytics is for big data and cloud computing- with hadoop enabling processing of massive data sets on scalable infrastructure. What are your plans for cloud computing, tablet based as well as mobile based computing.

a- This is an area where the plan is still being figured out in all organizations. The current explosion of data collected from mobile phones, text messages, and social websites will need radically new applications that can utilize the data from these sources. Current applications are based on the relational database paradigm designed in the 70’s through the 90’s of the 20th century.

But data sources are generating data in volumes and formats that are challenging this paradigm and will need a set of new tools and possibly programming languages to fit these needs. The cloud computing, tablet based and mobile computing (which are the same thing in my opinion, just different sizes of the device) are also two technologies that have not been explored in analytics yet.

The approach taken so far by most companies, including Angoss, is to rely on new xml-based standards to represent data structures for the particular models. In this case, it is the PMML (predictive modelling mark-up language) standard, in order to allow the interoperability between analytics applications. Standardizing on the representation of models is viewed as the first step in order to allow the implementation of these models to emerging platforms, being that the cloud or mobile, or social networking websites.

The second challenge cited above is the rapidly increasing size of the data to be analyzed. Angoss has already identified this challenge early on and is currently offering in-database analytics drivers for several database engines: Netezza, Teradata and SQL Server.

These drivers allow our analytics products to translate their routines into efficient SQL-based scripts that run in the database engine to exploit its performance as well as the powerful hardware on which it runs. Thus, instead of copying the data to a staging format for analytics, these drivers allow the data to be analyzed “in-place” within the database without moving it.

Thus offering performance, security and integrity. The performance is improved because of the use of the well tuned database engines running on powerful hardware.

Extra security is achieved by not copying the data to other platforms, which could be less secure. And finally, the integrity of the results are vastly improved by making sure that the results are always obtained by analyzing the up-to-date data residing in the database rather than an older copy of the data which could be obsolete by the time the analysis is concluded.

Ajay- What are the principal competing products to your offerings, and what makes your products special or differentiated in value to them (for each customer segment).

a- There are two major players in today’s market that we usually encounter as competitors, they are: SAS and IBM.

SAS offers a data mining workbench in the form of SAS Enterprise Miner, which is closely tied to SAS data mining methodology known as SEMMA.

On the other hand, IBM has recently acquired SPSS, which offered its Clementine data mining software. IBM has now rebranded Clementine as IBM SPSS Modeller.

In comparison to these products, our KnowledgeSTUDIO and KnowledgeSEEKER offer three main advantages: ease of use; affordability; and ease of integration into existing BI environments.

Angoss products were designed to look-and-feel-like popular Microsoft office applications. This makes the learning curve indeed very steep. Typically, an intermediate level analyst needs only 2-3 days of training to become proficient in the use of the software with all its advanced features.

Another important feature of Angoss software products is their integration with SAS/base product, and SQL-based database engines. All predictive models generated by Angoss can be automatically translated to SAS and SQL scripts. This allows the generation of scoring code for these common platforms. While the software interface simplifies all the tasks to allow business users to take advantage of the value added by predictive models, the software includes advanced options to allow experienced statisticians to fine-tune their models by adjusting all model parameters as needed.

In addition, Angoss offers a unique product called StrategyBuilder, which allows the analyst to add key performance indicators (KPI’s) to predictive models. KPI’s such as profitability, market share, and loyalty are usually required to be calculated in conjunction with any sales and marketing campaign. Therefore, StrategyBuilder was designed to integrate such KPI’s with the results of a predictive model in order to render the appropriate treatment for each customer segment. These results are all integrated into a deployment strategy that can also be translated into an execution code in SQL or SAS.

The above competitive features offered by the software products of Angoss is behind its success in serving over 4000 users from over 500 clients worldwide.

Ajay -Describe a major case study where using Angoss software helped save a big amount of revenue/costs by innovative data mining.

a-Rogers Telecommunications Inc. is one of the largest Canadian telecommunications providers, serving over 8.5 million customers and a revenue of 11.1 Billion Canadian Dollars (2009). In 2008, Rogers engaged Angoss in order to help with the problem of ballooning accounts receivable for a period of 18 months.

The problem was approached by improving the efficiency of the call centre serving the collections process by a set of predictive models. The first set of models were designed to find accounts likely to default ahead of time in order to take preventative measures. A second set of models were designed to optimize the call centre resources to focus on delinquent accounts likely to pay back most of the outstanding balance. Accounts that were identified as not likely to pack quickly were good candidates for “Early-out” treatment, by forwarding them directly to collection agencies. Angoss hosted Rogers’ data and provided on a regular interval the lists of accounts for each treatment to be deployed by the call centre dialler. As a result of this Rogers estimated an improvement of 10% of the collected sums.

Biography-

Mamdouh has been active in consulting, research, and training in various areas of information technology and software development for the last 20 years. He has worked on numerous projects with major organizations in North America and Europe in the areas of data mining, business analytics, business analysis, and engineering analysis. He has held several consulting positions for solution providers including Predict AG in Basel, Switzerland, and as ANGOSS Corp. Mamdouh is the Director of Professional services for EMEA region of ANGOSS Software. Mamdouh received his PhD in engineering from the University of Toronto and his MBA from the University of Leeds, UK.

Mamdouh is the author of:

"Credit Risk Scorecards: Development and Implmentation using SAS"
 "Data Preparation for Data Mining Using SAS",
 (The Morgan Kaufmann Series in Data Management Systems) (Paperback)
 and co-author of
 "Data Mining: Know it all",Morgan Kaufmann



Eberhard Miethke  works as a senior sales executive for Angoss

 

About Angoss-

Angoss is a global leader in delivering business intelligence software and predictive analytics to businesses looking to improve performance across sales, marketing and risk. With a suite of desktop, client-server and in-database software products and Software-as-a-Service solutions, Angoss delivers powerful approaches to turn information into actionable business decisions and competitive advantage.

Angoss software products and solutions are user-friendly and agile, making predictive analytics accessible and easy to use.