Software Review- Google Drive versus Dropbox

Here are some notes from reviewing Google Drive  https://drive.google.com/ vs Dropbox https://www.dropbox.com/.

1) Google Drive gives more free space upfront  than Dropbox.5GB versus 2GB

2) Dropbox has a referral system 500 mb per referral while there is no referral system for Google Drive

3) The sync facility with Google Docs makes Google Drive especially useful for prior users of Google Docs.

4) API access to Google Drive is only for Chrome apps which is intriguing!

https://developers.google.com/drive/apps_overview

Apps will not have any API access to files unless users have first installed the app in Chrome Web Store.

You can use the Dropbox API much more easily –

See the platforms at

https://www.dropbox.com/developers/start/core

Choose your platform:

iOS Android Python Ruby

But-

(though I wonder if you set the R working directory to the local shared drive for Google Drive it should sync up as well but of course be slower –http://scrogster.wordpress.com/2011/01/29/using-dropbox-with-r-2/)

5) Google Drive icon is ugly (seriously, dude!) , but the features in the Windows app is just the same as the Dropbox App. Too similar 😉

 

6) Upgrade space is much more cheaper to Google Drive than Dropbox ( by Google Drive prices being exactly  a quarter of prices on Dropbox and max storage being 16 times as much). This will affect power storage users. I expect to see some slowdown in Dropbox new business unless G Drive has outage (like Gmail) . Existing users at Dropbox probably wont shift for the small dollar amount- though it is quite easy to do so.

 

Install Google Drive on your local workstation and cut and paste your Dropbox local folder to the Google Drive local folder!!

7) Dropbox deserves credit for being first (like Hotmail and AOL) but Google Drive is almost better in all respects!

Google Drive

Free
5 GB of Drive (0% used)
10 GB of Gmail (48% used)
1 GB of Picasa (0% used)

Upgrade:

25 GB
2,49 $ / Month
+25 GB for Drive and Picasa
Bonus: Your Gmail storage will be upgraded to 25 GB.
Choose this plan

100 GB
4,99 $ / Month
+100 GB for Drive and Picasa
Bonus: Your Gmail storage will be upgraded to 25 GB.
Choose this plan

 Need more storage?

Up to 16 TB available

Dropbox–

Current account type

Large DropboxDropbox Badge greenFree
Free
Up to 18 GB (2 GB + 500 MB per referral)
Account info 

Other account types

Large DropboxDropbox Badge orange50 GB +
Pro 50
+1 GB per referral, up to +32 GB
$9.99/month or $99.00/year Upgrade to Pro 50
Large DropboxDropbox Badge purple100 GB +
Pro 100
+1 GB per referral, up to +32 GB
$19.99/month or $199.00/year Upgrade to Pro 100
Triple DropboxDropbox For Teams Badge1 TB +
Teams
Plans starting at 1 TB
Large shared quota, centralized admin and billing, and more!

 

 

 

Software Review- BigML.com – Machine Learning meets the Cloud

I had a chance to dekko the new startup BigML https://bigml.com/ and was suitably impressed by the briefing and my own puttering around the site. Here is my review-

1) The website is very intutively designed- You can create a dataset from an uploaded file in one click and you can create a Decision Tree model in one click as well. I wish other cloud computing websites like  Google Prediction API make design so intutive and easy to understand. Also unlike Google Prediction API, the models are not black box models, but have a description which can be understood.

2) It includes some well known data sources for people trying it out. They were kind enough to offer 5 invite codes for readers of Decisionstats ( if you want to check it yourself, use the codes below the post, note they are one time only , so the first five get the invites.

BigML is still invite only but plan to get into open release soon.

3) Data Sources can only be by uploading files (csv) but they plan to change this hopefully to get data from buckets (s3? or Google?) and from URLs.

4) The one click operation to convert data source into a dataset shows a histogram (distribution) of individual variables.The back end is clojure , because the team explained it made the easiest sense and fit with Java. The good news (?) is you would never see the clojure code at the back end. You can read about it from http://clojure.org/

As cloud computing takes off (someday) I expect clojure popularity to take off as well.

Clojure is a dynamic programming language that targets the Java Virtual Machine (and the CLR, and JavaScript). It is designed to be a general-purpose language, combining the approachability and interactive development of a scripting language with an efficient and robust infrastructure for multithreaded programming. Clojure is a compiled language – it compiles directly to JVM bytecode, yet remains completely dynamic. Every feature supported by Clojure is supported at runtime. Clojure provides easy access to the Java frameworks, with optional type hints and type inference, to ensure that calls to Java can avoid reflection.

Clojure is a dialect of Lisp

 

5) As of now decision trees is the only distributed algol, but they expect to roll out other machine learning stuff soon. Hopefully this includes regression (as logit and linear) and k means clustering. The trees are created and pruned in real time which gives a slightly animated (and impressive effect). and yes model building is an one click operation.

The real time -live pruning is really impressive and I wonder why /how it can ever be replicated in other software based on desktop, because of the sheer interactive nature.

 

Making the model is just half the work. Creating predictions and scoring the model is what is really the money-earner. It is one click and customization is quite intuitive. It is not quite PMML compliant yet so I hope some Zemanta like functionality can be added so huge amounts of models can be applied to predictions or score data in real time.

 

If you are a developer/data hacker, you should check out this section too- it is quite impressive that the designers of BigML have planned for API access so early.

https://bigml.com/developers

BigML.io gives you:

  • Secure programmatic access to all your BigML resources.
  • Fully white-box access to your datasets and models.
  • Asynchronous creation of datasets and models.
  • Near real-time predictions.

 

Note: For your convenience, some of the snippets below include your real username and API key.

Please keep them secret.

REST API

BigML.io conforms to the design principles of Representational State Transfer (REST)BigML.io is enterely HTTP-based.

BigML.io gives you access to four basic resources: SourceDatasetModel and Prediction. You cancreatereadupdate, and delete resources using the respective standard HTTP methods: POSTGET,PUT and DELETE.

All communication with BigML.io is JSON formatted except for source creation. Source creation is handled with a HTTP PUT using the “multipart/form-data” content-type

HTTPS

All access to BigML.io must be performed over HTTPS

and https://bigml.com/developers/quick_start ( In think an R package which uses JSON ,RCurl  would further help in enhancing ease of usage).

 

Summary-

Overall a welcome addition to make software in the real of cloud computing and statistical computation/business analytics both easy to use and easy to deploy with fail safe mechanisms built in.

Check out https://bigml.com/ for yourself to see.

The invite codes are here -one time use only- first five get the invites- so click and try your luck, machine learning on the cloud.

If you dont get an invite (or it is already used, just leave your email there and wait a couple of days to get approval)

  1. https://bigml.com/accounts/register/?code=E1FE7
  2. https://bigml.com/accounts/register/?code=09991
  3. https://bigml.com/accounts/register/?code=5367D
  4. https://bigml.com/accounts/register/?code=76EEF
  5. https://bigml.com/accounts/register/?code=742FD

Oracle R Updated!

Interesting message from https://blogs.oracle.com/R/ the latest R blog

 

_——–_

Oracle just released the latest update to Oracle R Enterprise, version 1.1. This release includes the Oracle R Distribution (based on open source R, version 2.13.2), an improved server installation, and much more.  The key new features include:

  • Extended Server Support: New support for Windows 32 and 64-bit server components, as well as continuing support for Linux 64-bit server components
  • Improved Installation: Linux 64-bit server installation now provides robust status updates and prerequisite checks
  • Performance Improvements: Improved performance for embedded R script execution calculations

In addition, the updated ROracle package, which is used with Oracle R Enterprise, now reads date data by conversion to character strings.

We encourage you download Oracle software for evaluation from the Oracle Technology Network. See these links for R-related software: Oracle R DistributionOracle R EnterpriseROracleOracle R Connector for Hadoop.  As always, we welcome comments and questions on the Oracle R Forum.

 

 

Oracle R Distribution 2-13.2 Update Available

Oracle has released an update to the Oracle R Distribution, an Oracle-supported distribution of open source R. Oracle R Distribution 2-13.2 now contains the ability to dynamically link the following libraries on both Windows and Linux:

  • The Intel Math Kernel Library (MKL) on Intel chips
  • The AMD Core Math Library (ACML) on AMD chips

 

To take advantage of the performance enhancements provided by Intel MKL or AMD ACML in Oracle R Distribution, simply add the MKL or ACML shared library directory to the LD_LIBRARY_PATH system environment variable. This automatically enables MKL or ACML to make use of all available processors, vastly speeding up linear algebra computations and eliminating the need to recompile R.  Even on a single core, the optimized algorithms in the Intel MKL libraries are faster than using R’s standard BLAS library.

Open-source R is linked to NetLib’s BLAS libraries, but they are not multi-threaded and only use one core. While R’s internal BLAS are efficient for most computations, it’s possible to recompile R to link to a different, multi-threaded BLAS library to improve performance on eligible calculations. Compiling and linking to R yourself can be involved, but for many, the significantly improved calculation speed justifies the effort. Oracle R Distribution notably simplifies the process of using external math libraries by enabling R to auto-load MKL orACML. For R commands that don’t link to BLAS code, taking advantage of database parallelism usingembedded R execution in Oracle R Enterprise is the route to improved performance.

For more information about rebuilding R with different BLAS libraries, see the linear algebra section in the R Installation and Administration manual. As always, the Oracle R Distribution is available as a free download to anyone. Questions and comments are welcome on the Oracle R Forum.

How to learn Hacking Part 2

Now that you have read the basics here at http://www.decisionstats.com/how-to-learn-to-be-a-hacker-easily/ (please do read this before reading the below)

 

Here is a list of tutorials that you should study (in order of ease)

1) LEARN BASICS – enough to get you a job maybe if that’s all you wanted.

http://www.offensive-security.com/metasploit-unleashed/Main_Page

2) READ SOME MORE-

Lena’s Reverse Engineering Tutorial-“Use Google.com  for finding the Tutorial

Lena’s Reverse Engineering tutorial. It includes 36 parts of individual cracking techniques and will teach you the basics of protection bypassing

01. Olly + assembler + patching a basic reverseme
02. Keyfiling the reverseme + assembler
03. Basic nag removal + header problems
04. Basic + aesthetic patching
05. Comparing on changes in cond jumps, animate over/in, breakpoints
06. “The plain stupid patching method”, searching for textstrings
07. Intermediate level patching, Kanal in PEiD
08. Debugging with W32Dasm, RVA, VA and offset, using LordPE as a hexeditor
09. Explaining the Visual Basic concept, introduction to SmartCheck and configuration
10. Continued reversing techniques in VB, use of decompilers and a basic anti-anti-trick
11. Intermediate patching using Olly’s “pane window”
12. Guiding a program by multiple patching.
13. The use of API’s in software, avoiding doublechecking tricks
14. More difficult schemes and an introduction to inline patching
15. How to study behaviour in the code, continued inlining using a pointer
16. Reversing using resources
17. Insights and practice in basic (self)keygenning
18. Diversion code, encryption/decryption, selfmodifying code and polymorphism
19. Debugger detected and anti-anti-techniques
20. Packers and protectors : an introduction
21. Imports rebuilding
22. API Redirection
23. Stolen bytes
24. Patching at runtime using loaders from lena151 original
25. Continued patching at runtime & unpacking armadillo standard protection
26. Machine specific loaders, unpacking & debugging armadillo
27. tElock + advanced patching
28. Bypassing & killing server checks
29. Killing & inlining a more difficult server check
30. SFX, Run Trace & more advanced string searching
31. Delphi in Olly & DeDe
32. Author tricks, HIEW & approaches in inline patching
33. The FPU, integrity checks & loader versus patcher
34. Reversing techniques in packed software & a S&R loader for ASProtect
35. Inlining inside polymorphic code
36. Keygenning

If you want more free training – hang around this website

http://www.owasp.org/index.php/Cheat_Sheets

OWASP Cheat Sheet Series

Draft OWASP Cheat Sheets

3) SPEND SOME MONEY on TRAINING

http://www.corelan-training.com/index.php/training/corelan-live/

Course overview

Module 1 – The x86 environment

  • System Architecture
  • Windows Memory Management
  • Registers
  • Introduction to Assembly
  • The stack

Module 2 – The exploit developer environment

  • Setting up the exploit developer lab
  • Using debuggers and debugger plugins to gather primitives

Module 3 – Saved Return Pointer Overwrite

  • Functions
  • Saved return pointer overwrites
  • Stack cookies

Module 4 – Abusing Structured Exception Handlers

  • Abusing exception handler overwrites
  • Bypassing Safeseh

Module 5 – Pointer smashing

  • Function pointers
  • Data/object pointers
  • vtable/virtual functions

Module 6 – Off-by-one and integer overflows

  • Off-by-one
  • Integer overflows

Module 7 – Limited buffers

  • Limited buffers, shellcode splitting

Module 8 – Reliability++ & reusability++

  • Finding and avoiding bad characters
  • Creative ways to deal with character set limitations

Module 9 – Fun with Unicode

  • Exploiting Unicode based overflows
  • Writing venetian alignment code
  • Creating and Using venetian shellcode

Module 10 – Heap Spraying Fundamentals

  • Heap Management and behaviour
  • Heap Spraying for Internet Explorer 6 and 7

Module 11 – Egg Hunters

  • Using and tweaking Egg hunters
  • Custom egghunters
  • Using Omelet egghunters
  • Egghunters in a WoW64 environment

Module 12 – Shellcoding

  • Building custom shellcode from scratch
  • Understanding existing shellcode
  • Writing portable shellcode
  • Bypassing Antivirus

Module 13 – Metasploit Exploit Modules

  • Writing exploits for the Metasploit Framework
  • Porting exploits to the Metasploit Framework

Module 14 – ASLR

  • Bypassing ASLR

Module 15 – W^X

  • Bypassing NX/DEP
  • Return Oriented Programming / Code Reuse (ROP) )

Module 16 – Advanced Heap Spraying

  • Heap Feng Shui & heaplib
  • Precise heap spraying in modern browsers (IE8 & IE9, Firefox 13)

Module 17 – Use After Free

  • Exploiting Use-After-Free conditions

Module 18 – Windows 8

  • Windows 8 Memory Protections and Bypass
TRAINING SCHEDULES AT

ALSO GET CERTIFIED http://www.offensive-security.com/information-security-training/penetration-testing-with-backtrack/ ($950 cost)

the syllabus is here at

http://www.offensive-security.com/documentation/penetration-testing-with-backtrack.pdf

4) HANG AROUND OTHER HACKERS

At http://attrition.org/attrition/

or The Noir  Hat Conferences-

http://blackhat.com/html/bh-us-12/training/bh-us-12-training_complete.html

or read this website

http://software-security.sans.org/developer-how-to/

5) GET A DEGREE

Yes it is possible

 

See http://web.jhu.edu/jhuisi/

The Johns Hopkins University Information Security Institute (JHUISI) is the University’s focal point for research and education in information security, assurance and privacy.

Scholarship Information

 

The Information Security Institute is now accepting applications for the Department of Defense’s Information Assurance Scholarship Program (IASP).  This scholarship includes full tuition, a living stipend, books and health insurance. In return each student recipient must work for a DoD agency at a competitive salary for six months for every semester funded. The scholarship is open to American citizens only.

http://web.jhu.edu/jhuisi/mssi/index.html

MASTER OF SCIENCE IN SECURITY INFORMATICS PROGRAM

The flagship educational experience offered by Johns Hopkins University in the area of information security and assurance is represented by the Master of Science in Security Informatics degree.  Over thirty courses are available in support of this unique and innovative graduate program.

———————————————————–

Disclaimer- I havent done any of these things- This is just a curated list from Quora  so I am open to feedback.

You use this at your own risk of conscience ,local legal jurisdictions and your own legal liability.

 

 

 

 

 

 

R for Predictive Modeling- PAW Toronto

A nice workshop on using R for Predictive Modeling by Max Kuhn Director, Nonclinical Statistics, Pfizer is on at PAW Toronto.

Workshop

Monday, April 23, 2012 in Toronto
Full-day: 9:00am – 4:30pm

R for Predictive Modeling:
A Hands-On Introduction

Intended Audience: Practitioners who wish to learn how to execute on predictive analytics by way of the R language; anyone who wants “to turn ideas into software, quickly and faithfully.”

Knowledge Level: Either hands-on experience with predictive modeling (without R) or hands-on familiarity with any programming language (other than R) is sufficient background and preparation to participate in this workshop.


What prior attendees have exclaimed


Workshop Description

This one-day session provides a hands-on introduction to R, the well-known open-source platform for data analysis. Real examples are employed in order to methodically expose attendees to best practices driving R and its rich set of predictive modeling packages, providing hands-on experience and know-how. R is compared to other data analysis platforms, and common pitfalls in using R are addressed.

The instructor, a leading R developer and the creator of CARET, a core R package that streamlines the process for creating predictive models, will guide attendees on hands-on execution with R, covering:

  • A working knowledge of the R system
  • The strengths and limitations of the R language
  • Preparing data with R, including splitting, resampling and variable creation
  • Developing predictive models with R, including decision trees, support vector machines and ensemble methods
  • Visualization: Exploratory Data Analysis (EDA), and tools that persuade
  • Evaluating predictive models, including viewing lift curves, variable importance and avoiding overfitting

Hardware: Bring Your Own Laptop
Each workshop participant is required to bring their own laptop running Windows or OS X. The software used during this training program, R, is free and readily available for download.

Attendees receive an electronic copy of the course materials and related R code at the conclusion of the workshop.


Schedule

  • Workshop starts at 9:00am
  • Morning Coffee Break at 10:30am – 11:00am
  • Lunch provided at 12:30 – 1:15pm
  • Afternoon Coffee Break at 2:30pm – 3:00pm
  • End of the Workshop: 4:30pm

Instructor

Max Kuhn, Director, Nonclinical Statistics, Pfizer

Max Kuhn is a Director of Nonclinical Statistics at Pfizer Global R&D in Connecticut. He has been applying models in the pharmaceutical industries for over 15 years.

He is a leading R developer and the author of several R packages including the CARET package that provides a simple and consistent interface to over 100 predictive models available in R.

Mr. Kuhn has taught courses on modeling within Pfizer and externally, including a class for the India Ministry of Information Technology.

Source-

http://www.predictiveanalyticsworld.com/toronto/2012/r_for_predictive_modeling.php

Book Review- Machine Learning for Hackers

This is review of the fashionably named book Machine Learning for Hackers by Drew Conway and John Myles White (O’Reilly ). The book is about hacking code in R.

 

The preface introduces the reader to the authors conception of what machine learning and hacking is all about. If the name of the book was machine learning for business analytsts or data miners, I am sure the content would have been unchanged though the popularity (and ambiguity) of the word hacker can often substitute for its usefulness. Indeed the many wise and learned Professors of statistics departments through out the civilized world would be mildly surprised and bemused by their day to day activities as hacking or teaching hackers. The book follows a case study and example based approach and uses the GGPLOT2 package within R programming almost to the point of ignoring any other native graphics system based in R. It can be quite useful for the aspiring reader who wishes to understand and join the booming market for skilled talent in statistical computing.

Chapter 1 has a very useful set of functions for data cleansing and formatting. It walks you through the basics of formatting based on dates and conditions, missing value and outlier treatment and using ggplot package in R for graphical analysis. The case study used is an Infochimps dataset with 60,000 recordings of UFO sightings. The case study is lucid, and done at a extremely helpful pace illustrating the powerful and flexible nature of R functions that can be used for data cleansing.The chapter mentions text editors and IDEs but fails to list them in a tabular format, while listing several other tables like Packages used in the book. It also jumps straight from installation instructions to functions in R without getting into the various kinds of data types within R or specifying where these can be referenced from. It thus assumes a higher level of basic programming understanding for the reader than the average R book.

Chapter 2 discusses data exploration, and has a very clear set of diagrams that explain the various data summary operations that are performed routinely. This is an innovative approach and will help students or newcomers to the field of data analysis. It introduces the reader to type determination functions, as well different kinds of encoding. The introduction to creating functions is quite elegant and simple , and numerical summary methods are explained adequately. While the chapter explains data exploration with the help of various histogram options in ggplot2 , it fails to create a more generic framework for data exploration or rules to assist the reader in visual data exploration in non standard data situations. While the examples are very helpful for a reader , there needs to be slightly more depth to step out of the example and into a framework for visual data exploration (or references for the same). A couple of case studies however elaborately explained cannot do justice to the vast field of data exploration and especially visual data exploration.

Chapter 3 discussed binary classification for the specific purpose for spam filtering using a dataset from SpamAssassin. It introduces the reader to the naïve Bayes classifier and the principles of text mining suing the tm package in R. Some of the example codes could have been better commented for easier readability in the book. Overall it is quite a easy tutorial for creating a naïve Bayes classifier even for beginners.

Chapter 4 discusses the issues in importance ranking and creating recommendation systems specifically in the case of ordering email messages into important and not important. It introduces the useful grepl, gsub, strsplit, strptime ,difftime and strtrim functions for parsing data. The chapter further introduces the reader to the concept of log (and affine) transformations in a lucid and clear way that can help even beginners learn this powerful transformation concept. Again the coding within this chapter is sparsely commented which can cause difficulties to people not used to learn reams of code. ( it may have been part of the code attached with the book, but I am reading an electronic book and I did not find an easy way to go back and forth between the code and the book). The readability of the chapters would be further enhanced by the use of flow charts explaining the path and process followed than overtly verbose textual descriptions running into multiple pages. The chapters are quite clearly written, but a helpful visual summary can help in both revising the concepts and elucidate the approach taken further.A suggestion for the authors could be to compile the list of useful functions they introduce in this book as a sort of reference card (or Ref Card) for R Hackers or atleast have a chapter wise summary of functions, datasets and packages used.

Chapter 5 discusses linear regression , and it is a surprising and not very good explanation of regression theory in the introduction to regression. However the chapter makes up in practical example what it oversimplifies in theory. The chapter on regression is not the finest chapter written in this otherwise excellent book. Part of this is because of relative lack of organization- correlation is explained after linear regression is explained. Once again the lack of a function summary and a process flow diagram hinders readability and a separate section on regression metrics that help make a regression result good or not so good could be a welcome addition. Functions introduced include lm.

Chapter 6 showcases Generalized Additive Model (GAM) and Polynomial Regression, including an introduction to singularity and of over-fitting. Functions included in this chapter are transform, and poly while the package glmnet is also used here. The chapter also introduces the reader formally to the concept of cross validation (though examples of cross validation had been introduced in earlier chapters) and regularization. Logistic regression is also introduced at the end in this chapter.

Chapter 7 is about optimization. It describes error metric in a very easy to understand way. It creates a grid by using nested loops for various values of intercept and slope of a regression equation and computing the sum of square of errors. It then describes the optim function in detail including how it works and it’s various parameters. It introduces the curve function. The chapter then describes ridge regression including definition and hyperparameter lamda. The use of optim function to optimize the error in regression is useful learning for the aspiring hacker. Lastly it describes a case study of breaking codes using the simplistic Caesar cipher, a lexical database and the Metropolis method. Functions introduced in this chapter include .Machine$double.eps .

Chapter 8 deals with Principal Component Analysis and unsupervised learning. It uses the ymd function from lubridate package to convert string to date objects, and the cast function from reshape package to further manipulate the structure of data. Using the princomp functions enables PCA in R.The case study creates a stock market index and compares the results with the Dow Jones index.

Chapter 9 deals with Multidimensional Scaling as well as clustering US senators on the basis of similarity in voting records on legislation .It showcases matrix multiplication using %*% and also the dist function to compute distance matrix.

Chapter 10 has the subject of K Nearest Neighbors for recommendation systems. Packages used include class ,reshape and and functions used include cor, function and log. It also demonstrates creating a custom kNN function for calculating Euclidean distance between center of centroids and data. The case study used is the R package recommendation contest on Kaggle. Overall a simplistic introduction to creating a recommendation system using K nearest neighbors, without getting into any of the prepackaged packages within R that deal with association analysis , clustering or recommendation systems.

Chapter 11 introduces the reader to social network analysis (and elements of graph theory) using the example of Erdos Number as an interesting example of social networks of mathematicians. The example of Social Graph API by Google for hacking are quite new and intriguing (though a bit obsolete by changes, and should be rectified in either the errata or next edition) . However there exists packages within R that should be atleast referenced or used within this chapter (like TwitteR package that use the Twitter API and ROauth package for other social networks). Packages used within this chapter include Rcurl, RJSONIO, and igraph packages of R and functions used include rbind and ifelse. It also introduces the reader to the advanced software Gephi. The last example is to build a recommendation engine for whom to follow in Twitter using R.

Chapter 12 is about model comparison and introduces the concept of Support Vector Machines. It uses the package e1071 and shows the svm function. It also introduces the concept of tuning hyper parameters within default algorithms . A small problem in understanding the concepts is the misalignment of diagram pages with the relevant code. It lastly concludes with using mean square error as a method for comparing models built with different algorithms.

 

Overall the book is a welcome addition in the library of books based on R programming language, and the refreshing nature of the flow of material and the practicality of it’s case studies make this a recommended addition to both academic and corporate business analysts trying to derive insights by hacking lots of heterogeneous data.

Have a look for yourself at-
http://shop.oreilly.com/product/0636920018483.do

Sunburst and Cartograms in R

There are still some graphs that cannot be yet made in R using a straightforward function or package.

One is sunburst (which is  radial kind of treemap-that can be made in R). See diagrams below to see the difference. Note sunburst is visually similar to coxcomb (Nightangle) graphs. Coxcombs can also be manipulated and made- but I am yet to find a straight package to make coxcomb using a single function _histdata package in R comes close in terms on historical datasets.

The Treemap uses a rectangular, space-filling slice-and-dice technique to visualize objects in the different levels of a hierarchy. The area and color of each item corresponds to an attribute of the item as well.

The Sunburst technique is an alternative, space-filling visualization that uses a radial rather than a rectangular layout. An example Sunburst display is shown below. citation- http://www.cc.gatech.edu/gvu/ii/sunburst/

Coxcomb Below-

 

 

Other is cartogram -whose packages are MIA  -RCartogram is very basic package http://www.omegahat.org/Rcartogram/ – It is better to use Toad Scraper software than R for this kind of map.

Cartograms are  used to produce spatial plots where the boundaries of regions can be transformed to be proportional to density/counts/populations. This is illustrated in plots such as

Mark Newman’s plot of People living with HIV/AIDS
Citation: Friendly, Michael (2001), Gallery of Data Visualization, Electronic document, http://www.datavis.ca/gallery/,Accessed: 03/23/2012 18:23:33