Easter Eggs in #Rstats

Yes.

Cite-http://en.wikipedia.org/wiki/Easter_egg_(media)

A virtual Easter egg is an intentional hidden messagein-joke, or feature in a work such as a computer programweb pagevideo gamemoviebook, or crossword. The term was coined — according to Warren Robinett — by Atari after they were pointed to the secret message left by Robinett in the game Adventure.[1] It draws a parallel with the custom of the Easter egg hunt observed in many Western nations as well as the last Russian imperial family’s tradition of giving elaborately jeweled egg-shaped creations by Carl Fabergé which contained hidden surprises

In R.

Cite-http://stackoverflow.com/questions/7910270/are-there-any-easter-eggs-in-base-r-or-in-major-packages

I like this

just type

example(readLine)

and these two

on 32 bit R type

memory.limit(4096)

and on any version try four question marks

Perhaps the prettiest eggs are the demos in animation package.

But there is magic in asking for help on internal functions in R

Just type-

?.Internal

and you get the sobering thought that you probably are a R Muggle

Call an Internal Function

Description

.Internal performs a call to an internal code which is built in to the R interpreter.

Only true R wizards should even consider using this function, and only R developers can add to the list of internal functions.

Usage

 .Internal(call)

Arguments

call a call expression

See Also

.Primitive, .External (the nearest equivalent available to users).

I liked that I could see the actual internal functions in svn at http://svn.r-project.org/R/trunk/src/main/names.c

The opening of the internals document floored me.

It must have been a curious year in 2003-4 when the copyright of R was held (briefly it seems) by the R Foundation and also by the R Development Core Team. (which sounds better?)

*  R : A Computer Language for Statistical Data Analysis
 *  Copyright (C) 1995, 1996  Robert Gentleman and Ross Ihaka
 *  Copyright (C) 1997--2012  The R Development Core Team
 *  Copyright (C) 2003, 2004  The R Foundation

My contribution

R help discourages for loop

Try ??for or ?for

you go into a loop till you hit escape

If you want more-just write
 .Internal(inspect(ls())) at the end of your  R program.

 

 

 

 

 

 

How to learn Hacking Part 2

Now that you have read the basics here at http://www.decisionstats.com/how-to-learn-to-be-a-hacker-easily/ (please do read this before reading the below)

 

Here is a list of tutorials that you should study (in order of ease)

1) LEARN BASICS – enough to get you a job maybe if that’s all you wanted.

http://www.offensive-security.com/metasploit-unleashed/Main_Page

2) READ SOME MORE-

Lena’s Reverse Engineering Tutorial-“Use Google.com  for finding the Tutorial

Lena’s Reverse Engineering tutorial. It includes 36 parts of individual cracking techniques and will teach you the basics of protection bypassing

01. Olly + assembler + patching a basic reverseme
02. Keyfiling the reverseme + assembler
03. Basic nag removal + header problems
04. Basic + aesthetic patching
05. Comparing on changes in cond jumps, animate over/in, breakpoints
06. “The plain stupid patching method”, searching for textstrings
07. Intermediate level patching, Kanal in PEiD
08. Debugging with W32Dasm, RVA, VA and offset, using LordPE as a hexeditor
09. Explaining the Visual Basic concept, introduction to SmartCheck and configuration
10. Continued reversing techniques in VB, use of decompilers and a basic anti-anti-trick
11. Intermediate patching using Olly’s “pane window”
12. Guiding a program by multiple patching.
13. The use of API’s in software, avoiding doublechecking tricks
14. More difficult schemes and an introduction to inline patching
15. How to study behaviour in the code, continued inlining using a pointer
16. Reversing using resources
17. Insights and practice in basic (self)keygenning
18. Diversion code, encryption/decryption, selfmodifying code and polymorphism
19. Debugger detected and anti-anti-techniques
20. Packers and protectors : an introduction
21. Imports rebuilding
22. API Redirection
23. Stolen bytes
24. Patching at runtime using loaders from lena151 original
25. Continued patching at runtime & unpacking armadillo standard protection
26. Machine specific loaders, unpacking & debugging armadillo
27. tElock + advanced patching
28. Bypassing & killing server checks
29. Killing & inlining a more difficult server check
30. SFX, Run Trace & more advanced string searching
31. Delphi in Olly & DeDe
32. Author tricks, HIEW & approaches in inline patching
33. The FPU, integrity checks & loader versus patcher
34. Reversing techniques in packed software & a S&R loader for ASProtect
35. Inlining inside polymorphic code
36. Keygenning

If you want more free training – hang around this website

http://www.owasp.org/index.php/Cheat_Sheets

OWASP Cheat Sheet Series

Draft OWASP Cheat Sheets

3) SPEND SOME MONEY on TRAINING

http://www.corelan-training.com/index.php/training/corelan-live/

Course overview

Module 1 – The x86 environment

  • System Architecture
  • Windows Memory Management
  • Registers
  • Introduction to Assembly
  • The stack

Module 2 – The exploit developer environment

  • Setting up the exploit developer lab
  • Using debuggers and debugger plugins to gather primitives

Module 3 – Saved Return Pointer Overwrite

  • Functions
  • Saved return pointer overwrites
  • Stack cookies

Module 4 – Abusing Structured Exception Handlers

  • Abusing exception handler overwrites
  • Bypassing Safeseh

Module 5 – Pointer smashing

  • Function pointers
  • Data/object pointers
  • vtable/virtual functions

Module 6 – Off-by-one and integer overflows

  • Off-by-one
  • Integer overflows

Module 7 – Limited buffers

  • Limited buffers, shellcode splitting

Module 8 – Reliability++ & reusability++

  • Finding and avoiding bad characters
  • Creative ways to deal with character set limitations

Module 9 – Fun with Unicode

  • Exploiting Unicode based overflows
  • Writing venetian alignment code
  • Creating and Using venetian shellcode

Module 10 – Heap Spraying Fundamentals

  • Heap Management and behaviour
  • Heap Spraying for Internet Explorer 6 and 7

Module 11 – Egg Hunters

  • Using and tweaking Egg hunters
  • Custom egghunters
  • Using Omelet egghunters
  • Egghunters in a WoW64 environment

Module 12 – Shellcoding

  • Building custom shellcode from scratch
  • Understanding existing shellcode
  • Writing portable shellcode
  • Bypassing Antivirus

Module 13 – Metasploit Exploit Modules

  • Writing exploits for the Metasploit Framework
  • Porting exploits to the Metasploit Framework

Module 14 – ASLR

  • Bypassing ASLR

Module 15 – W^X

  • Bypassing NX/DEP
  • Return Oriented Programming / Code Reuse (ROP) )

Module 16 – Advanced Heap Spraying

  • Heap Feng Shui & heaplib
  • Precise heap spraying in modern browsers (IE8 & IE9, Firefox 13)

Module 17 – Use After Free

  • Exploiting Use-After-Free conditions

Module 18 – Windows 8

  • Windows 8 Memory Protections and Bypass
TRAINING SCHEDULES AT

ALSO GET CERTIFIED http://www.offensive-security.com/information-security-training/penetration-testing-with-backtrack/ ($950 cost)

the syllabus is here at

http://www.offensive-security.com/documentation/penetration-testing-with-backtrack.pdf

4) HANG AROUND OTHER HACKERS

At http://attrition.org/attrition/

or The Noir  Hat Conferences-

http://blackhat.com/html/bh-us-12/training/bh-us-12-training_complete.html

or read this website

http://software-security.sans.org/developer-how-to/

5) GET A DEGREE

Yes it is possible

 

See http://web.jhu.edu/jhuisi/

The Johns Hopkins University Information Security Institute (JHUISI) is the University’s focal point for research and education in information security, assurance and privacy.

Scholarship Information

 

The Information Security Institute is now accepting applications for the Department of Defense’s Information Assurance Scholarship Program (IASP).  This scholarship includes full tuition, a living stipend, books and health insurance. In return each student recipient must work for a DoD agency at a competitive salary for six months for every semester funded. The scholarship is open to American citizens only.

http://web.jhu.edu/jhuisi/mssi/index.html

MASTER OF SCIENCE IN SECURITY INFORMATICS PROGRAM

The flagship educational experience offered by Johns Hopkins University in the area of information security and assurance is represented by the Master of Science in Security Informatics degree.  Over thirty courses are available in support of this unique and innovative graduate program.

———————————————————–

Disclaimer- I havent done any of these things- This is just a curated list from Quora  so I am open to feedback.

You use this at your own risk of conscience ,local legal jurisdictions and your own legal liability.

 

 

 

 

 

 

send email by R

For automated report delivery I have often used send email options in BASE SAS. For R, for scheduling tasks and sending me automated mails on completion of tasks I have two R options and 1 Windows OS scheduling option. Note red font denotes the parameters that should be changed. Anything else should NOT be changed.

Option 1-

Use the mail package at

http://cran.r-project.org/web/packages/mail/mail.pdf

> library(mail)

Attaching package: ‘mail’

The following object(s) are masked from ‘package:sendmailR’:

sendmail

>
> sendmail(“ohri2007@gmail.com“, subject=”Notification from R“,message=“Calculation finished!”, password=”rmail”)
[1] “Message was sent to ohri2007@gmail.com! You have 19 messages left.”

Disadvantage- Only 20 email messages by IP address per day. (but thats ok!)

Option 2-

use sendmailR package at http://cran.r-project.org/web/packages/sendmailR/sendmailR.pdf

install.packages()
library(sendmailR)
from <- sprintf(“<sendmailR@%s>”, Sys.info()[4])
to <- “<ohri2007@gmail.com>”
subject <- “Hello from R
body <- list(“It works!”, mime_part(iris))
sendmail(from, to, subject, body,control=list(smtpServer=”ASPMX.L.GOOGLE.COM”))

 

 

BiocInstaller version 1.2.1, ?biocLite for help
> install.packages(“sendmailR”)
Installing package(s) into ‘/home/ubuntu/R/library’
(as ‘lib’ is unspecified)
also installing the dependency ‘base64’

trying URL ‘http://cran.at.r-project.org/src/contrib/base64_1.1.tar.gz&#8217;
Content type ‘application/x-gzip’ length 61109 bytes (59 Kb)
opened URL
==================================================
downloaded 59 Kb

trying URL ‘http://cran.at.r-project.org/src/contrib/sendmailR_1.1-1.tar.gz&#8217;
Content type ‘application/x-gzip’ length 6399 bytes
opened URL
==================================================
downloaded 6399 bytes

BiocInstaller version 1.2.1, ?biocLite for help
* installing *source* package ‘base64’ …
** package ‘base64’ successfully unpacked and MD5 sums checked
** libs
gcc -std=gnu99 -I/usr/local/lib64/R/include -I/usr/local/include -fpic -g -O2 -c base64.c -o base64.o
gcc -std=gnu99 -shared -L/usr/local/lib64 -o base64.so base64.o -L/usr/local/lib64/R/lib -lR
installing to /home/ubuntu/R/library/base64/libs
** R
** preparing package for lazy loading
** help
*** installing help indices
** building package indices …
** testing if installed package can be loaded
BiocInstaller version 1.2.1, ?biocLite for help

* DONE (base64)
BiocInstaller version 1.2.1, ?biocLite for help
* installing *source* package ‘sendmailR’ …
** package ‘sendmailR’ successfully unpacked and MD5 sums checked
** R
** preparing package for lazy loading
** help
*** installing help indices
** building package indices …
** testing if installed package can be loaded
BiocInstaller version 1.2.1, ?biocLite for help

* DONE (sendmailR)

The downloaded packages are in
‘/tmp/RtmpsM222s/downloaded_packages’
> library(sendmailR)
Loading required package: base64
> from <- sprintf(“<sendmailR@%s>”, Sys.info()[4])
> to <- “<ohri2007@gmail.com>”
> subject <- “Hello from R”
> body <- list(“It works!”, mime_part(iris))
> sendmail(from, to, subject, body,
+ control=list(smtpServer=”ASPMX.L.GOOGLE.COM”))
$code
[1] “221”

$msg
[1] “2.0.0 closing connection ff2si17226764qab.40”

Disadvantage-This worked when I used the Amazon Cloud using the BioConductor AMI (for free 2 hours) at http://www.bioconductor.org/help/cloud/

It did NOT work when I tried it use it from my Windows 7 Home Premium PC from my Indian ISP (!!) .

It gave me this error

or in wait_for(250) :
SMTP Error: 5.7.1 [180.215.172.252] The IP you’re using to send mail is not authorized

 

PAUSE–

ps Why do this (send email by R)?

Note you can add either of the two programs of the end of the code that you want to be notified automatically. (like daily tasks)

This is mostly done for repeated business analytics tasks (like reports and analysis that need to be run at specific periods of time)

pps- What else can I do with this?

Can be modified to include sms or tweets  or even blog by email by modifying the   “to”  location appropriately.

3) Using Windows Task Scheduler to run R codes automatically (either the above)

or just sending an email

got to Start>  All Programs > Accessories >System Tools > Task Scheduler ( or by default C:Windowssystem32taskschd.msc)

Create a basic task

Now you can use this to run your daily/or scheduled R code  or you can send yourself email as well.

and modify the parameters- note the SMTP server (you can use the ones for google in example 2 at ASPMX.L.GOOGLE.COM)

and check if it works!

 

Related

 Geeky Things , Bro

Configuring IIS on your Windows 7 Home Edition-

note path to do this is-

Control Panel>All Control Panel Items> Program and Features>Turn Windows features on or off> Internet Information Services

and

http://stackoverflow.com/questions/709635/sending-mail-from-batch-file

 

Random Sampling a Dataset in R

A common example in business  analytics data is to take a random sample of a very large dataset, to test your analytics code. Note most business analytics datasets are data.frame ( records as rows and variables as columns)  in structure or database bound.This is partly due to a legacy of traditional analytics software.

Here is how we do it in R-

• Refering to parts of data.frame rather than whole dataset.

Using square brackets to reference variable columns and rows

The notation dataset[i,k] refers to element in the ith row and jth column.

The notation dataset[i,] refers to all elements in the ith row .or a record for a data.frame

The notation dataset[,j] refers to all elements in the jth column- or a variable for a data.frame.

For a data.frame dataset

> nrow(dataset) #This gives number of rows

> ncol(dataset) #This gives number of columns

An example for corelation between only a few variables in a data.frame.

> cor(dataset1[,4:6])

Splitting a dataset into test and control.

ts.test=dataset2[1:200] #First 200 rows

ts.control=dataset2[201:275] #Next 75 rows

• Sampling

Random sampling enables us to work on a smaller size of the whole dataset.

use sample to create a random permutation of the vector x.

Suppose we want to take a 5% sample of a data frame with no replacement.

Let us create a dataset ajay of random numbers

ajay=matrix( round(rnorm(200, 5,15)), ncol=10)

#This is the kind of code line that frightens most MBAs!!

Note we use the round function to round off values.

ajay=as.data.frame(ajay)

 nrow(ajay)

[1] 20

> ncol(ajay)

[1] 10

This is a typical business data scenario when we want to select only a few records to do our analysis (or test our code), but have all the columns for those records. Let  us assume we want to sample only 5% of the whole data so we can run our code on it

Then the number of rows in the new object will be 0.05*nrow(ajay).That will be the size of the sample.

The new object can be referenced to choose only a sample of all rows in original object using the size parameter.

We also use the replace=FALSE or F , to not the same row again and again. The new_rows is thus a 5% sample of the existing rows.

Then using the square backets and ajay[new_rows,] to get-

b=ajay[sample(nrow(ajay),replace=F,size=0.05*nrow(ajay)),]

 

You can change the percentage from 5 % to whatever you want accordingly.

Reading Google Docs using R Curl

 

and finally I can download my Google spreadsheet file using-

require(RCurl)

download.file(url=”http://curl.haxx.se/ca/cacert.pem&#8221;, destfile=”cacert.pem”)

url=”https://docs.google.com/spreadsheet/pub?key=0AtYMMvghK2ytcldUcWNNZTltcXdIZUZ2MWU0R1NfeWc&output=csv&#8221;

b <- getURL(url,cainfo=”cacert.pem”)

write.table(b,quote = FALSE, sep = “,”,file=”test.csv”)

 

Previously (for past 3 5 7 hours)-

The codes at http://blog.revolutionanalytics.com/2011/09/using-google-spreadsheets-with-r-an-update.html dont work thanks to the SSL authentication issue. and the packages at [http://www.omegahat.org/RGoogleDocs/] and [https://r-forge.r-project.org/projects/rgoogledata/] are missing in action. 

So I mixed the codes at http://blog.revolutionanalytics.com/2009/09/how-to-use-a-google-spreadsheet-as-data-in-r.html and http://www.brocktibert.com/blog/2012/01/19/358/

and I get this error while using http://thebiobucket.blogspot.in/2012/03/r-function-to-read-data-from-google.html#more

Error in read.table(file = file, header = header, sep = sep, quote = quote, :
more columns than column names

 

Interview: Hjálmar Gíslason, CEO of DataMarket.com

Here is an interview with Hjálmar Gíslason, CEO of Datamarket.com  . DataMarket is an active marketplace for structured data and statistics. Through powerful search and visual data exploration, DataMarket connects data seekers with data providers.

 

Ajay-  Describe your journey as an entrepreneur and techie in Iceland. What are the 10 things that surprised you most as a tech entrepreneur.

HG- DataMarket is my fourth tech start-up since at age 20 in 1996. The previous ones have been in gaming, mobile and web search. I come from a technical background but have been moving more and more to the business side over the years. I can still prototype, but I hope there isn’t a single line of my code in production!

Funny you should ask about the 10 things that have surprised me the most on this journey, as I gave a presentation – literally yesterday – titled: “9 things nobody told me about the start-up business”

They are:
* Do NOT generalize – especially not to begin with
* Prioritize – and find a work-flow that works for you
* Meet people – face to face
* You are a sales person – whether you like it or not
* Technology is not a product – it’s the entire experience
* Sell the current version – no matter how amazing the next one is
* Learn from mistakes – preferably others’
* Pick the right people – good people is not enough
* Tell a good story – but don’t make them up

I obviously elaborate on each of these points in the talk, but the points illustrate roughly some of the things I believe I’ve learned … so far 😉

9 things nobody told me about the start-up business

Ajay-

Both Amazon  and Google  have entered the public datasets space. Infochimps  has 14,000+ public datasets. The US has http://www.data.gov/

So clearly the space is both competitive and yet the demand for public data repositories is clearly under served still. 

How does DataMarket intend to address this market in a unique way to differentiate itself from others.

HG- DataMarket is about delivering business data to decision makers. We help data seekers find the data they need for planning and informed decision making, and data publishers reaching this audience. DataMarket.com is the meeting point, where data seekers can come to find the best available data, and data publishers can make their data available whether for free or for a fee. We’ve populated the site with a wealth of data from public sources such as the UN, Eurostat, World Bank, IMF and others, but there is also premium data that is only available to those that subscribe to and pay for the access. For example we resell the entire data offering from the EIU (Economist Intelligence Unit) (link: http://datamarket.com/data/list/?q=provider:eiu)

DataMarket.com allows all this data to be searched, visualized, compared and downloaded in a single place in a standard, unified manner.

We see many of these efforts not as competition, but as valuable potential sources of data for our offering, while others may be competing with parts of our proposition, such as easy access to the public data sets.

 

Ajay- What are your views on data confidentiality and access to data owned by Governments funded by tax payer money.

HG- My views are very simple: Any data that is gathered or created for taxpayers’ money should be open and free of charge unless higher priorities such as privacy or national security indicate otherwise.

Reflecting that, any data that is originally open and free of charge is still open and free of charge on DataMarket.com, just easier to find and work with.

Ajay-  How is the technology entrepreneurship and venture capital scene in Iceland. What things work and what things can be improved?

HG- The scene is quite vibrant, given the small community. Good teams with promising concepts have been able to get the funding they need to get started and test their footing internationally. When the rapid growth phase is reached outside funding may still be needed.

There are positive and negative things about any location. Among the good things about Iceland from the stand point of a technology start-up are highly skilled tech people and a relatively simple corporate environment. Among the bad things are a tiny local market, lack of skills in international sales and marketing and capital controls that were put in place after the crash of the Icelandic economy in 2008.

I’ve jokingly said that if a company is hot in the eyes of VCs it would get funding even if it was located in the jungles of Congo, while if they’re only lukewarm towards you, they will be looking for any excuse not to invest. Location can certainly be one of them, and in that case being close to the investor communities – physically – can be very important.

We’re opening up our sales and marketing offices in Boston as we speak. Not to be close to investors though, but to be close to our market and current customers.

Ajay- Describe your hobbies when you are not founding amazing tech startups.

HG- Most of my time is spent working – which happens to by my number one hobby.

It is still important to step away from it all every now and then to see things in perspective and come back with a clear mind.

I *love* traveling to exotic places. Me and my wife have done quite a lot of traveling in Africa and S-America: safari, scuba diving, skiing, enjoying nature. When at home I try to do some sports activities 3-4 times a week at least, and – recently – play with my now 8 month old son as much as I can.

About-

http://datamarket.com/p/about/team/

Management

Hjalmar GislasonHjálmar Gíslason, Founder and CEO: Hjalmar is a successful entrepreneur, founder of three startups in the gaming, mobile and web sectors since 1996. Prior to launching DataMarket, Hjalmar worked on new media and business development for companies in the Skipti Group (owners of Iceland Telecom) after their acquisition of his search startup – Spurl. Hjalmar offers a mix of business, strategy and technical expertise. DataMarket is based largely on his vision of the need for a global exchange for structured data.

hjalmar.gislason@datamarket.com

To know more, have a quick  look at  http://datamarket.com/