Chapman/Hall announces new series on R

Rice University, Houston, Texas, USA - Cohen H...
Image via Wikipedia
R Authors get more choice and variety now-
http://www.mail-archive.com/r-help@r-project.org/msg122965.html
We are pleased to announce the launch of a new series of books on R. 

Chapman & Hall/CRC: The R Series

Aims and Scope
This book series reflects the recent rapid growth in the development and 
application of R, the programming language and software environment for 
statistical computing and graphics. R is now widely used in academic research, 
education, and industry. It is constantly growing, with new versions of the 
core software released regularly and more than 2,600 packages available. It is 
difficult for the documentation to keep pace with the expansion of the 
software, and this vital book series provides a forum for the publication of 
books covering many aspects of the development and application of R.

The scope of the series is wide, covering three main threads:
• Applications of R to specific disciplines such as biology, epidemiology, 
genetics, engineering, finance, and the social sciences.
• Using R for the study of topics of statistical methodology, such as linear 
and mixed modeling, time series, Bayesian methods, and missing data.
• The development of R, including programming, building packages, and graphics.

The books will appeal to programmers and developers of R software, as well as 
applied statisticians and data analysts in many fields. The books will feature 
detailed worked examples and R code fully integrated into the text, ensuring 
their usefulness to researchers, practitioners and students.

Series Editors
John M. Chambers (Department of Statistics, Stanford University, USA; 
j...@stat.stanford.edu)
Torsten Hothorn (Institut für Statistik, Ludwig-Maximilians-Universität, 
München, Germany; torsten.hoth...@stat.uni-muenchen.de)
Duncan Temple Lang (Department of Statistics, University of California, Davis, 
USA; dun...@wald.ucdavis.edu)
Hadley Wickham (Department of Statistics, Rice University, Houston, Texas, USA; 
had...@rice.edu)

Call for Proposals
We are interested in books covering all aspects of the development and 
application of R software. If you have an idea for a book, please contact one 
of the series editors above or one of the Chapman & Hall/CRC statistics 
acquisitions editors below. Please provide brief details of topic, audience, 
aims and scope, and include an outline if possible.

We look forward to hearing from you.

Best regards,Rob Calver (rob.cal...@informa.com)
David Grubbs (david.gru...@taylorandfrancis.com)
John Kimmel (john.kim...@taylorandfrancis.com)

 

Mapping Health Statistics at CDC.gov

Astronaut Buzz Aldrin during the first human l...
Image via Wikipedia

CDC.gov has a great tool for showing United States statistics on death and injury, drillable by various details.

The tool is hosted at http://wisqars.cdc.gov:8080/cdcMapFramework/

As a test I decided to map out injuries due to fire arms , and compare firearm deaths of white people versus the whole population.(see firearm deaths file)

See white people are more likely than black people to own guns (also read http://www.ncbi.nlm.nih.gov/pubmed/9572612 ), but it seems statistically they are less likely to be injured by firearms- so it could affect support for gun control laws on a racial ground- that was my null hypothesis. No politics, just plain statistics. I dont know- why dont you look at the data and decide-

 

 

 

 

 

Common Analytical Tasks

WorldWarII-DeathsByCountry-Barchart
Image via Wikipedia

 

Some common analytical tasks from the diary of the glamorous life of a business analyst-

1) removing duplicates from a dataset based on certain key values/variables
2) merging two datasets based on a common key/variable/s
3) creating a subset based on a conditional value of a variable
4) creating a subset based on a conditional value of a time-date variable
5) changing format from one date time variable to another
6) doing a means grouped or classified at a level of aggregation
7) creating a new variable based on if then condition
8) creating a macro to run same program with different parameters
9) creating a logistic regression model, scoring dataset,
10) transforming variables
11) checking roc curves of model
12) splitting a dataset for a random sample (repeatable with random seed)
13) creating a cross tab of all variables in a dataset with one response variable
14) creating bins or ranks from a certain variable value
15) graphically examine cross tabs
16) histograms
17) plot(density())
18)creating a pie chart
19) creating a line graph, creating a bar graph
20) creating a bubbles chart
21) running a goal seek kind of simulation/optimization
22) creating a tabular report for multiple metrics grouped for one time/variable
23) creating a basic time series forecast

and some case studies I could think of-

 

As the Director, Analytics you have to examine current marketing efficiency as well as help optimize sales force efficiency across various channels. In addition you have to examine multiple sales channels including inbound telephone, outgoing direct mail, internet email campaigns. The datawarehouse is an RDBMS but it has multiple data quality issues to be checked for. In addition you need to submit your budget estimates for next year’s annual marketing budget to maximize sales return on investment.

As the Director, Risk you have to examine the overdue mortgages book that your predecessor left you. You need to optimize collections and minimize fraud and write-offs, and your efforts would be measured in maximizing profits from your department.

As a social media consultant you have been asked to maximize social media analytics and social media exposure to your client. You need to create a mechanism to report particular brand keywords, as well as automated triggers between unusual web activity, and statistical analysis of the website analytics metrics. Above all it needs to be set up in an automated reporting dashboard .

As a consultant to a telecommunication company you are asked to monitor churn and review the existing churn models. Also you need to maximize advertising spend on various channels. The problem is there are a large number of promotions always going on, some of the data is either incorrectly coded or there are interaction effects between the various promotions.

As a modeller you need to do the following-
1) Check ROC and H-L curves for existing model
2) Divide dataset in random splits of 40:60
3) Create multiple aggregated variables from the basic variables

4) run regression again and again
5) evaluate statistical robustness and fit of model
6) display results graphically
All these steps can be broken down in little little pieces of code- something which i am putting down a list of.
Are there any common data analysis tasks that you think I am missing out- any common case studies ? let me know.

 

 

 

Challenges of Analyzing a dataset (with R)

GIF-animation showing a moving echocardiogram;...
Image via Wikipedia

Analyzing data can have many challenges associated with it. In the case of business analytics data, these challenges or constraints can have a marked effect on the quality and timeliness of the analysis as well as the expected versus actual payoff from the analytical results.

Challenges of Analytical Data Processing-

1) Data Formats- Reading in complete data, without losing any part (or meta data), or adding in superfluous details (that increase the scope). Technical constraints of data formats are relatively easy to navigate thanks to ODBC and well documented and easily search-able syntax and language.

The costs of additional data augmentation (should we pay for additional credit bureau data to be appended) , time of storing and processing the data (every column needed for analysis can add in as many rows as whole dataset, which can be a time enhancing problem if you are considering an extra 100 variables with a few million rows), but above all that of business relevance and quality guidelines will ensure basic data input and massaging are considerable parts of whole analytical project timeline.

2) Data Quality-Perfect data exists in a perfect world. The price of perfect information is one business will mostly never budget or wait for. To deliver inferences and results based on summaries of data which has missing, invalid, outlier data embedded within it makes the role of an analyst just as important as which ever tool is chosen to remove outliers, replace missing values, or treat invalid data.

3) Project Scope-

How much data? How much Analytical detail versus High Level Summary? Timelines for delivery as well as refresh of data analysis? Checks (statistical as well as business)?

How easy is it to load and implement the new analysis in existing Information Technology Infrastructure? These are some of the outer parameters that can limit both your analytical project scope, your analytical tool choice, and your processing methodology.
4) Output Results vis a vis stakeholder expectation management-

Stakeholders like to see results, not constraints, hypothesis ,assumptions , p-value, or chi -square value. Output results need to be streamlined to a decision management process to justify the investment of human time and effort in an analytical project, choice,training and navigating analytical tool complexities and constraints are subset of it. Optimum use of graphical display is a part of aligning results to a more palatable form to stakeholders, provided graphics are done nicely.

Eg Marketing wants to get more sales so they need a clear campaign, to target certain customers via specific channels with specified collateral. In order to base their business judgement, business analytics needs to validate , cross validate and sometimes invalidate this business decision making with clear transparent methods and processes.

Given a dataset- the basic analytical steps that an analyst will do with R are as follows. This is meant as a note for analysts at a beginner level with R.

Package -specific syntax

update.packages() #This updates all packages
install.packages(package1) #This installs a package locally, a one time event
library(package1) #This loads a specified package in the current R session, which needs to be done every R session

CRAN________LOCAL HARD DISK_________R SESSION is the top to bottom hierarchy of package storage and invocation.

ls() #This lists all objects or datasets currently active in the R session

> names(assetsCorr)  #This gives the names of variables within a dataframe
[1] “AssetClass”            “LargeStocksUS”         “SmallStocksUS”
[4] “CorporateBondsUS”      “TreasuryBondsUS”       “RealEstateUS”
[7] “StocksCanada”          “StocksUK”              “StocksGermany”
[10] “StocksSwitzerland”     “StocksEmergingMarkets”

> str(assetsCorr) #gives complete structure of dataset
‘data.frame’:    12 obs. of  11 variables:
$ AssetClass           : Factor w/ 12 levels “CorporateBondsUS”,..: 4 5 2 6 1 12 3 7 11 9 …
$ LargeStocksUS        : num  15.3 16.4 1 0 0 …
$ SmallStocksUS        : num  13.49 16.64 0.66 1 0 …
$ CorporateBondsUS     : num  9.26 6.74 0.38 0.46 1 0 0 0 0 0 …
$ TreasuryBondsUS      : num  8.44 6.26 0.33 0.27 0.95 1 0 0 0 0 …
$ RealEstateUS         : num  10.6 17.32 0.08 0.59 0.35 …
$ StocksCanada         : num  10.25 19.78 0.56 0.53 -0.12 …
$ StocksUK             : num  10.66 13.63 0.81 0.41 0.24 …
$ StocksGermany        : num  12.1 20.32 0.76 0.39 0.15 …
$ StocksSwitzerland    : num  15.01 20.8 0.64 0.43 0.55 …
$ StocksEmergingMarkets: num  16.5 36.92 0.3 0.6 0.12 …

> dim(assetsCorr) #gives dimensions observations and variable number
[1] 12 11

str(Dataset) – This gives the structure of the dataset (note structure gives both the names of variables within dataset as well as dimensions of the dataset)

head(dataset,n1) gives the first n1 rows of dataset while
tail(dataset,n2) gives the last n2 rows of a dataset where n1,n2 are numbers and dataset is the name of the object (here a data frame that is being considered)

summary(dataset) gives you a brief summary of all variables while

library(Hmisc)
describe(dataset) gives a detailed description on the variables

simple graphics can be given by

hist(Dataset1)
and
plot(Dataset1)

As you can see in above cases, there are multiple ways to get even basic analysis about data in R- however most of the syntax commands are intutively understood (like hist for histogram, t.test for t test, plot for plot).

For detailed analysis throughout the scope of analysis, for a business analytics user it is recommended to using multiple GUI, and multiple packages. Even for highly specific and specialized analytical tasks it is recommended to check for a GUI that incorporates the required package.

R for Predictive Modeling:Workshop

A view of the Oakland-San Francisco Bay Bridge...
Image via Wikipedia

A workshop on using R for Predictive Modeling, by the Director, Non Clinical Stats, Pfizer. Interesting Bay Area Event- part of next edition of Predictive Analytics World

Sunday, March 13, 2011 in San Francisco

R for Predictive Modeling:
A Hands-On Introduction

Intended Audience: Practitioners who wish to learn how to execute on predictive analytics by way of the R language; anyone who wants “to turn ideas into software, quickly and faithfully.”

Knowledge Level: Either hands-on experience with predictive modeling (without R) or hands-on familiarity with any programming language (other than R) is sufficient background and preparation to participate in this workshop.


Workshop Description

This one-day session provides a hands-on introduction to R, the well-known open-source platform for data analysis. Real examples are employed in order to methodically expose attendees to best practices driving R and its rich set of predictive modeling packages, providing hands-on experience and know-how. R is compared to other data analysis platforms, and common pitfalls in using R are addressed.

The instructor, a leading R developer and the creator of CARET, a core R package that streamlines the process for creating predictive models, will guide attendees on hands-on execution with R, covering:

  • A working knowledge of the R system
  • The strengths and limitations of the R language
  • Preparing data with R, including splitting, resampling and variable creation
  • Developing predictive models with R, including decision trees, support vector machines and ensemble methods
  • Visualization: Exploratory Data Analysis (EDA), and tools that persuade
  • Evaluating predictive models, including viewing lift curves, variable importance and avoiding overfitting

Hardware: Bring Your Own Laptop
Each workshop participant is required to bring their own laptop running Windows or OS X. The software used during this training program, R, is free and readily available for download.

Attendees receive an electronic copy of the course materials and related R code at the conclusion of the workshop.


Schedule

  • Workshop starts at 9:00am
  • Morning Coffee Break at 10:30am – 11:00am
  • Lunch provided at 12:30 – 1:15pm
  • Afternoon Coffee Break at 2:30pm – 3:00pm
  • End of the Workshop: 4:30pm

Instructor

Max Kuhn, Director, Nonclinical Statistics, Pfizer

Max Kuhn is a Director of Nonclinical Statistics at Pfizer Global R&D in Connecticut. He has been apply models in the pharmaceutical industries for over 15 years.

He is a leading R developer and the author of several R packages including the CARET package that provides a simple and consistent interface to over 100 predictive models available in R.

Mr. Kuhn has taught courses on modeling within Pfizer and externally, including a class for the India Ministry of Information Technology.

 

http://www.predictiveanalyticsworld.com/sanfrancisco/2011/r_for_predictive_modeling.php

 

Assumptions on Guns

This is a very crude yet functional homemade g...
Image via Wikipedia

While sitting in Delhi, India- I sometimes notice that there is one big new worthy gun related incident in the United States every six months (latest incident Gabrielle giffords incident) and the mythical NRA (which seems just as powerful as equally mythical Jewish American or Cuban American lobby ) . As someone who once trained to fire guns (.22 and SLR -rifles actually), comes from a gun friendly culture (namely Punjabi-North Indian), my dad carried a gun sometimes as a police officer during his 30 plus years of service, I dont really like guns (except when they are in a movie). My 3 yr old son likes guns a lot (for some peculiar genetic reason even though we are careful not to show him any violent TV or movie at all).

So to settle the whole guns are good- guns are bad thing I turned to the one resource -Internet

Here are some findings-

1) A lot of hard statistical data on guns is biased by the perspective of the writer- it reminds me of the old saying Lies, True lies and Statistics.

2) There is not a lot of hard data in terms of a universal research which can be quoted- unlike say lung cancer is caused by cigarettes- no broad research which can be definitive in this regards.

3) American , European and Asian attitudes on guns actually seem a function of historical availability , historic crime rates and cultural propensity for guns.

Switzerland and United States are two extreme outlier examples on gun causing violence causal statistics.

4) Lot of old and outdated data quoted selectively.

It seems you can fudge data about guns in the following ways-

1) Use relative per capita numbers vis a vis aggregate numbers

2) Compare and contrast gun numbers with crime numbers selectively

3) Remove drill down of type of firearm- like hand guns, rifles, automatic, semi automatic

Maybe I am being simplistic-but I found it easier to list credible data sources on guns than to summarize all assumptions on guns. Are guns good or bad- i dont know -it depends? Any research you can quote is welcome.

Data Sources on Guns and Firearms and Crime-

1) http://www.justfacts.com/guncontrol.asp

Ownership

* As of 2009, the United States has a population of 307 million people.[5]

* Based on production data from firearm manufacturers,[6] there are roughly 300 million firearms owned by civilians in the United States as of 2010. Of these, about 100 million are handguns.[7]

* Based upon surveys, the following are estimates of private firearm ownership in the U.S. as of 2010:

Households With a Gun Adults Owning a Gun Adults Owning a Handgun
Percentage 40-45% 30-34% 17-19%
Number 47-53 million 70-80 million 40-45 million

[8]

* A 2005 nationwide Gallup poll of 1,012 adults found the following levels of firearm ownership:

Category Percentage Owning 

a Firearm

Households 42%
Individuals 30%
Male 47%
Female 13%
White 33%
Nonwhite 18%
Republican 41%
Independent 27%
Democrat 23%

[9]

* In the same poll, gun owners stated they own firearms for the following reasons:

Protection Against Crime 67%
Target Shooting 66%
Hunting 41%

2) NationMaster.com

http://www.nationmaster.com/graph/cri_mur_wit_fir-crime-murders-with-firearms

VIEW DATA: Totals Per capita
Definition Source Printable version
Bar Graph Pie Chart Map

Showing latest available data.

Rank Countries Amount
# 1 South Africa: 31,918
# 2 Colombia: 21,898
# 3 Thailand: 20,032
# 4 United States: 9,369
# 5 Philippines: 7,708
# 6 Mexico: 2,606
# 7 Slovakia: 2,356
# 8 El Salvador: 1,441
# 9 Zimbabwe: 598
# 10 Peru: 442
# 11 Germany: 269
# 12 Czech Republic: 181
# 13 Ukraine: 173
# 14 Canada: 144
# 15 Albania: 135
# 16 Costa Rica: 131
# 17 Azerbaijan: 120
# 18 Poland: 111
# 19 Uruguay: 109
# 20 Spain: 97
# 21 Portugal: 90
# 22 Croatia: 76
# 23 Switzerland: 68
# 24 Bulgaria: 63
# 25 Australia: 59
# 26 Sweden: 58
# 27 Bolivia: 52
# 28 Japan: 47
# 29 Slovenia: 39
= 30 Hungary: 38
= 30 Belarus: 38
# 32 Latvia: 28
# 33 Burma: 27
# 34 Macedonia, The Former Yugoslav Republic of: 26
# 35 Austria: 25
# 36 Estonia: 21
# 37 Moldova: 20
# 38 Lithuania: 16
= 39 United Kingdom: 14
= 39 Denmark: 14
# 41 Ireland: 12
# 42 New Zealand: 10
# 43 Chile: 9
# 44 Cyprus: 4
# 45 Morocco: 1
= 46 Iceland: 0
= 46 Luxembourg: 0
= 46 Oman: 0
Total: 100,693
Weighted average: 2,097.8

DEFINITION: Total recorded intentional homicides committed with a firearm. Crime statistics are often better indicators of prevalence of law enforcement and willingness to report crime, than actual prevalence.

SOURCE: The Eighth United Nations Survey on Crime Trends and the Operations of Criminal Justice Systems (2002) (United Nations Office on Drugs and Crime, Centre for International Crime Prevention)

3)

Bureau of Justice Statistics

see

http://bjs.ojp.usdoj.gov/dataonline/Search/Homicide/State/RunHomTrendsInOneVar.cfm

or the brand new website (till 2009) on which I CANNOT get gun crime but can get total

http://www.ucrdatatool.gov/

Estimated  murder rate *
Year United States-Total

1960 5.1
1961 4.8
1962 4.6
1963 4.6
1964 4.9
1965 5.1
1966 5.6
1967 6.2
1968 6.9
1969 7.3
1970 7.9
1971 8.6
1972 9.0
1973 9.4
1974 9.8
1975 9.6
1976 8.7
1977 8.8
1978 9.0
1979 9.8
1980 10.2
1981 9.8
1982 9.1
1983 8.3
1984 7.9
1985 8.0
1986 8.6
1987 8.3
1988 8.5
1989 8.7
1990 9.4
1991 9.8
1992 9.3
1993 9.5
1994 9.0
1995 8.2
1996 7.4
1997 6.8
1998 6.3
1999 5.7
2000 5.5
2001 5.6
2002 5.6
2003 5.7
2004 5.5
2005 5.6
2006 5.7
2007 5.6
2008 5.4
2009 5.0
Notes: National or state offense totals are based on data from all reporting agencies and estimates for unreported areas.
* Rates are the number of reported offenses per 100,000 population
  • United States-Total –
    • The 168 murder and nonnegligent homicides that occurred as a result of the bombing of the Alfred P. Murrah Federal Building in Oklahoma City in 1995 are included in the national estimate.
    • The 2,823 murder and nonnegligent homicides that occurred as a result of the events of September 11, 2001, are not included in the national estimates.

     

  • Sources: 


    FBI, Uniform Crime Reports as prepared by the National Archive of Criminal Justice Data


    4) united nation statistics of 2002  were too old in my opinion.
    wikipedia seems too broad based to qualify as a research article but is easily accessible http://en.wikipedia.org/wiki/Gun_violence_in_the_United_States
    to actually buy a gun or see guns available for purchase in United States see
    http://www.usautoweapons.com/

    America's Data Book: Census Abstract 2011

    U.S. Census Bureau Regions, Partnership and Da...
    Image via Wikipedia

    An excellent summary of 2011 Census Statistical abstract was given by NYTimes at

    http://www.nytimes.com/interactive/2011/01/07/us/CENSUS.html?hp

    Like more white people now enjoy jazz than black people now (presumably who have got rap music), but not details enough on ahem country music

    The Data book is at http://www.census.gov/compendia/statab/

    What is the Statistical Abstract?

    The Statistical Abstract of the United States, published since 1878, is the authoritative and comprehensive summary of statistics on the social, political, and economic organization of the United States.

    Use the Abstract as a convenient volume for statistical reference, and as a guide to sources of more information both in print and on the Web.

    Sources of data include the Census Bureau, Bureau of Labor Statistics, Bureau of Economic Analysis, and many other Federal agencies and private organizations.

    Tables of Interest

    1060 – Shopping Centers–Number and Gross Leasable Area [Excel 31K] | [PDF 59K]

    1170 – Flow of Funds Accounts-Liabilities of Households and Nonprofit Organizations [Excel 41K] | [PDF 66K]

    1172 – Amount of Debt Held by Families-Percent Distribution [Excel 29K] | [PDF 66K]

    1173 – Ratios of Debt Payments to Family Income [Excel 857K] | [PDF 64K]

    327 – Law Enforcement Officers Killed and Assaulted [Excel 34k] | [PDF 468k]

    From the last table you can see , while the number of officers killed or feloniously killed decreased by 20% in past five years, the number of officers assaulted by firearms grew by 20% in the same period.