Worst Chart Ever- Confusing PIE chart as English Test

THE IELTS is used for testing non native speakers to test if they understand English properly.

Imagine many Indian and Chinese smart engineers answering this question.



Writing test

Writing Task 1 (a report)
Three pie charts about young Australians secondary school leavers in years 1980, 1990 and 2000. Each pie showed the proportion of school leavers that continued studying, were employed or unemployed. Write a report to a university lecturer describing the pie charts below.
IELTS Academic Writing Task 1 Pie Charts

Changes in R software

The newest version of R is now available for download. R 2.13 is ready !!




Windows-specific changes to R





  • Windows 2000 is no longer supported. (It went end-of-life in July 2010.)






  • win_iconv has been updated: this version has a change in the behaviour with BOMs on UTF-16 and UTF-32 files – it removes BOMs when reading and adds them when writing. (This is consistent with Microsoft applications, but Unix versions of iconv usually ignore them.) 


  • Support for repository type win64.binary (used for 64-bit Windows binaries for R 2.11.x only) has been removed. 


  • The installers no longer put an ‘Uninstall’ item on the start menu (to conform to current Microsoft UI guidelines). 


  • Running R always sets the environment variable R_ARCH (as it does on a Unix-alike from the shell-script front-end). 


  • The defaults for options("browser") and options("pdfviewer") are now set from environment variables R_BROWSER and R_PDFVIEWER respectively (as on a Unix-alike). A value of "false" suppresses display (even if there is no false.exe present on the path). 


  • If options("install.lock") is set to TRUE, binary package installs are protected against failure similar to the way source package installs are protected. 


  • file.exists() and unlink() have more support for files > 2GB. 


  • The versions of R.exe in ‘R_HOME/bin/i386,x64/bin’ now support options such as R --vanilla CMD: there is no comparable interface for ‘Rcmd.exe’. 


  • A few more file operations will now work with >2GB files. 


  • The environment variable R_HOME in an R session now uses slash as the path separator (as it always has when set by Rcmd.exe). 


  • Rgui has a new menu item for the PDF ‘Sweave User Manual’.






  • zip.unpack() is deprecated: use unzip().




  • There is support for libjpeg-turbo via setting JPEGDIR to that value in ‘MkRules.local’. 

    Support for jpeg-6b has been removed.


  • The sources now work with libpng-1.5.1, jpegsrc.v8c (which are used in the CRAN builds) and tiff-4.0.0beta6 (CRAN builds use 3.9.1). It is possible that they no longer work with older versions than libpng-1.4.5.






  • Workaround for the incorrect values given by Windows’ casinh function on the branch cuts.
  • Bug fixes for drawing raster objects on windows(). The symptom was the occasional raster image not being drawn, especially when drawing multiple raster images in a single expression. Thanks to Michael Sumner for report and testing.
  • Printing extremely long string values could overflow the stack and cause the GUI to crash. (PR#14543)

Tonnes of changes!!




    • replicate() (by default) and vapply() (always) now return a
      higher-dimensional array instead of a matrix in the case where
      the inner function value is an array of dimension >= 2.

    • Printing and formatting of floating point numbers is now using
      the correct number of digits, where it previously rarely differed
      by a few digits. (See “scientific” entry below.)  This affects
      _many_ *.Rout.save checks in packages.


    • normalizePath() has been moved to the base package (from utils):
      this is so it can be used by library() and friends.

      It now does tilde expansion.

      It gains new arguments winslash (to select the separator on
      Windows) and mustWork to control the action if a canonical path
      cannot be found.

    • The previously barely documented limit of 256 bytes on a symbol
      name has been raised to 10,000 bytes (a sanity check).  Long
      symbol names can sometimes occur when deparsing expressions (for
      example, in model.frame).

    • reformulate() gains a intercept argument.

    • cmdscale(add = FALSE) now uses the more common definition that
      there is a representation in n-1 or less dimensions, and only
      dimensions corresponding to positive eigenvalues are used.
      (Avoids confusion such as PR#14397.)

    • Names used by c(), unlist(), cbind() and rbind() are marked with
      an encoding when this can be ascertained.

    • R colours are now defined to refer to the sRGB color space.

      The PDF, PostScript, and Quartz graphics devices record this
      fact.  X11 (and Cairo) and Windows just assume that your screen

    • system.file() gains a mustWork argument (suggestion of Bill

    • new.env(hash = TRUE) is now the default.

    • list2env(envir = NULL) defaults to hashing (with a suitably sized
      environment) for lists of more than 100 elements.

    • text() gains a formula method.

    • IQR() now has a type argument which is passed to quantile().

    • as.vector(), as.double() etc duplicate less when they leave the
      mode unchanged but remove attributes.

      as.vector(mode = "any") no longer duplicates when it does not
      remove attributes.  This helps memory usage in matrix() and

      matrix() duplicates less if data is an atomic vector with
      attributes such as names (but no class).

      dim(x) <- NULL duplicates less if x has neither dimensions nor
      names (since this operation removes names and dimnames).

    • setRepositories() gains an addURLs argument.

    • chisq.test() now also returns a stdres component, for
      standardized residuals (which have unit variance, unlike the
      Pearson residuals).

    • write.table() and friends gain a fileEncoding argument, to
      simplify writing files for use on other OSes (e.g. a spreadsheet
      intended for Windows or Mac OS X Excel).

    • Assignment expressions of the form foo::bar(x) <- y and
      foo:::bar(x) <- y now work; the replacement functions used are
      foo::`bar<-` and foo:::`bar<-`.

    • Sys.getenv() gains a names argument so Sys.getenv(x, names =
      FALSE) can replace the common idiom of as.vector(Sys.getenv()).
      The default has been changed to not name a length-one result.

    • Lazy loading of environments now preserves attributes and locked
      status. (The locked status of bindings and active bindings are
      still not preserved; this may be addressed in the future).

    • options("install.lock") may be set to FALSE so that
      install.packages() defaults to --no-lock installs, or (on
      Windows) to TRUE so that binary installs implement locking.

    • sort(partial = p) for large p now tries Shellsort if quicksort is
      not appropriate and so works for non-numeric atomic vectors.

    • sapply() gets a new option simplify = "array" which returns a
      “higher rank” array instead of just a matrix when FUN() returns a
      dim() length of two or more.

      replicate() has this option set by default, and vapply() now
      behaves that way internally.

    • aperm() becomes S3 generic and gets a table method which
      preserves the class.

    • merge() and as.hclust() methods for objects of class "dendrogram"
      are now provided.

    • as.POSIXlt.factor() now passes ... to the character method
      (suggestion of Joshua Ulrich).

    • The character method of as.POSIXlt() now tries to find a format
      that works for all non-NA inputs, not just the first one.

    • str() now has a method for class "Date" analogous to that for
      class "POSIXt".

    • New function file.link() to create hard links on those file
      systems (POSIX, NTFS but not FAT) that support them.

    • New Summary() group method for class "ordered" implements min(),
      max() and range() for ordered factors.

    • mostattributes<-() now consults the "dim" attribute and not the
      dim() function, making it more useful for objects (such as data
      frames) from classes with methods for dim().  It also uses
      attr<-() in preference to the generics name<-(), dim<-() and
      dimnames<-().  (Related to PR#14469.)

    • There is a new option "browserNLdisabled" to disable the use of
      an empty (e.g. via the ‘Return’ key) as a synonym for c in
      browser() or n under debug().  (Wish of PR#14472.)

    • example() gains optional new arguments character.only and
      give.lines enabling programmatic exploration.

    • serialize() and unserialize() are no longer described as
      ‘experimental’.  The interface is now regarded as stable,
      although the serialization format may well change in future
      releases.  (serialize() has a new argument version which would
      allow the current format to be written if that happens.)

      New functions saveRDS() and readRDS() are public versions of the
      ‘internal’ functions .saveRDS() and .readRDS() made available for
      general use.  The dot-name versions remain available as several
      package authors have made use of them, despite the documentation.

      saveRDS() supports compress = "xz".

    • Many functions when called with a not-open connection will now
      ensure that the connection is left not-open in the event of
      error.  These include read.dcf(), dput(), dump(), load(),
      parse(), readBin(), readChar(), readLines(), save(), writeBin(),
      writeChar(), writeLines(), .readRDS(), .saveRDS() and
      tools::parse_Rd(), as well as functions calling these.

    • Public functions find.package() and path.package() replace the
      internal dot-name versions.

    • The default method for terms() now looks for a "terms" attribute
      if it does not find a "terms" component, and so works for model

    • httpd() handlers receive an additional argument containing the
      full request headers as a raw vector (this can be used to parse
      cookies, multi-part forms etc.). The recommended full signature
      for handlers is therefore function(url, query, body, headers,

    • file.edit() gains a fileEncoding argument to specify the encoding
      of the file(s).

    • The format of the HTML package listings has changed.  If there is
      more than one library tree , a table of links to libraries is
      provided at the top and bottom of the page.  Where a library
      contains more than 100 packages, an alphabetic index is given at
      the top of the section for that library.  (As a consequence,
      package names are now sorted case-insensitively whatever the

    • isSeekable() now returns FALSE on connections which have
      non-default encoding.  Although documented to record if ‘in
      principle’ the connection supports seeking, it seems safer to
      report FALSE when it may not work.

    • R CMD REMOVE and remove.packages() now remove file R.css when
      removing all remaining packages in a library tree.  (Related to
      the wish of PR#14475: note that this file is no longer

    • unzip() now has a unzip argument like zip.file.extract().  This
      allows an external unzip program to be used, which can be useful
      to access features supported by Info-ZIP's unzip version 6 which
      is now becoming more widely available.

    • There is a simple zip() function, as wrapper for an external zip

    • bzfile() connections can now read from concatenated bzip2 files
      (including files written with bzfile(open = "a")) and files
      created by some other compressors (such as the example of

    • The primitive function c() is now of type BUILTIN.

    • plot(<dendrogram>, .., nodePar=*) now obeys an optional xpd
      specification (allowing clipping to be turned off completely).

    • nls(algorithm="port") now shares more code with nlminb(), and is
      more consistent with the other nls() algorithms in its return

    • xz has been updated to 5.0.1 (very minor bugfix release).

    • image() has gained a logical useRaster argument allowing it to
      use a bitmap raster for plotting a regular grid instead of
      polygons. This can be more efficient, but may not be supported by
      all devices. The default is FALSE.

    • list.files()/dir() gains a new argument include.dirs() to include
      directories in the listing when recursive = TRUE.

    • New function list.dirs() lists all directories, (even empty

    • file.copy() now (by default) copies read/write/execute
      permissions on files, moderated by the current setting of

    • Sys.umask() now accepts mode = NA and returns the current umask
      value (visibly) without changing it.

    • There is a ! method for classes "octmode" and "hexmode": this
      allows xor(a, b) to work if both a and b are from one of those

    • as.raster() no longer fails for vectors or matrices containing

    • New hook "before.new.plot" allows functions to be run just before
      advancing the frame in plot.new, which is potentially useful for
      custom figure layout implementations.

    • Package tools has a new function compactPDF() to try to reduce
      the size of PDF files _via_ qpdf or gs.

    • tar() has a new argument extra_flags.

    • dotchart() accepts more general objects x such as 1D tables which
      can be coerced by as.numeric() to a numeric vector, with a
      warning since that might not be appropriate.

    • The previously internal function create.post() is now exported
      from utils, and the documentation for bug.report() and
      help.request() now refer to that for create.post().

      It has a new method = "mailto" on Unix-alikes similar to that on
      Windows: it invokes a default mailer via open (Mac OS X) or
      xdg-open or the default browser (elsewhere).

      The default for ccaddress is now getOption("ccaddress") which is
      by default unset: using the username as a mailing address
      nowadays rarely works as expected.

    • The default for options("mailer") is now "mailto" on all

    • unlink() now does tilde-expansion (like most other file

    • file.rename() now allows vector arguments (of the same length).

    • The "glm" method for logLik() now returns an "nobs" attribute
      (which stats4::BIC() assumed it did).

      The "nls" method for logLik() gave incorrect results for zero

    • There is a new generic function nobs() in package stats, to
      extract from model objects a suitable value for use in BIC
      calculations.  An S4 generic derived from it is defined in
      package stats4.

    • Code for S4 reference-class methods is now examined for possible
      errors in non-local assignments.

    • findClasses, getGeneric, findMethods and hasMethods are revised
      to deal consistently with the package= argument and be consistent
      with soft namespace policy for finding objects.

    • tools::Rdiff() now has the option to return not only the status
      but a character vector of observed differences (which are still
      by default sent to stdout).

    • The startup environment variables R_ENVIRON_USER, R_ENVIRON,
      R_PROFILE_USER and R_PROFILE are now treated more consistently.
      In all cases an empty value is considered to be set and will stop
      the default being used, and for the last two tilde expansion is
      performed on the file name.  (Note that setting an empty value is
      probably impossible on Windows.)

    • Using R --no-environ CMD, R --no-site-file CMD or R
      --no-init-file CMD sets environment variables so these settings
      are passed on to child R processes, notably those run by INSTALL,
      check and build. R --vanilla CMD sets these three options (but
      not --no-restore).

    • smooth.spline() is somewhat faster.  With cv=NA it allows some
      leverage computations to be skipped,

    • The internal (C) function scientific(), at the heart of R's
      format.info(x), format(x), print(x), etc, for numeric x, has been
      re-written in order to provide slightly more correct results,
      fixing PR#14491, notably in border cases including when digits >=
      16, thanks to substantial contributions (code and experiments)
      from Petr Savicky.  This affects a noticable amount of numeric
      output from R.

    • A new function grepRaw() has been introduced for finding subsets
      of raw vectors. It supports both literal searches and regular

    • Package compiler is now provided as a standard package.  See
      ?compiler::compile for information on how to use the compiler.
      This package implements a byte code compiler for R: by default
      the compiler is not used in this release.  See the ‘R
      Installation and Administration Manual’ for how to compile the
      base and recommended packages.

    • Providing an exportPattern directive in a NAMESPACE file now
      causes classes to be exported according to the same pattern, for
      example the default from package.skeleton() to specify all names
      starting with a letter.  An explicit directive to
      exportClassPattern will still over-ride.

    • There is an additional marked encoding "bytes" for character
      strings.  This is intended to be used for non-ASCII strings which
      should be treated as a set of bytes, and never re-encoded as if
      they were in the encoding of the currrent locale: useBytes = TRUE
      is autmatically selected in functions such as writeBin(),
      writeLines(), grep() and strsplit().

      Only a few character operations are supported (such as substr()).

      Printing, format() and cat() will represent non-ASCII bytes in
      such strings by a \xab escape.

    • The new function removeSource() removes the internally stored
      source from a function.

    • "srcref" attributes now include two additional line number
      values, recording the line numbers in the order they were parsed.

    • New functions have been added for source reference access:
      getSrcFilename(), getSrcDirectory(), getSrcLocation() and

    • Sys.chmod() has an extra argument use_umask which defaults to
      true and restricts the file mode by the current setting of umask.
      This means that all the R functions which manipulate
      file/directory permissions by default respect umask, notably R

    • tempfile() has an extra argument fileext to create a temporary
      filename with a specified extension.  (Suggestion and initial
      implementation by Dirk Eddelbuettel.)

      There are improvements in the way Sweave() and Stangle() handle
      non-ASCII vignette sources, especially in a UTF-8 locale: see
      ‘Writing R Extensions’ which now has a subsection on this topic.

    • factanal() now returns the rotation matrix if a rotation such as
      "promax" is used, and hence factor correlations are displayed.
      (Wish of PR#12754.)

    • The gctorture2() function provides a more refined interface to
      the GC torture process.  Environment variables R_GCTORTURE,
      used to control the GC torture process.

    • file.copy(from, to) no longer regards it as an error to supply a
      zero-length from: it now simply does nothing.

    • rstandard.glm gains a type argument which can be used to request
      standardized Pearson residuals.

    • A start on a Turkish translation, thanks to Murat Alkan.

    • .libPaths() calls normalizePath(winslash = "/") on the paths:
      this helps (usually) present them in a user-friendly form and
      should detect duplicate paths accessed via different symbolic


    • Sweave() has options to produce PNG and JPEG figures, and to use
      a custom function to open a graphics device (see ?RweaveLatex).
      (Based in part on the contribution of PR#14418.)

    • The default for Sweave() is to produce only PDF figures (rather
      than both EPS and PDF).

    • Environment variable SWEAVE_OPTIONS can be used to supply
      defaults for existing or new options to be applied after the
      Sweave driver setup has been run.

    • The Sweave manual is now included as a vignette in the utils

    • Sweave() handles keep.source=TRUE much better: it could duplicate
      some lines and omit comments. (Reported by John Maindonald and


    • Because they use a C99 interface which a C++ compiler is not
      required to support, Rvprintf and REvprintf are only defined by
      R_ext/Print.h in C++ code if the macro R_USE_C99_IN_CXX is
      defined when it is included.

    • pythag duplicated the C99 function hypot.  It is no longer
      provided, but is used as a substitute for hypot in the very
      unlikely event that the latter is not available.

    • R_inspect(obj) and R_inspect3(obj, deep, pvec) are (hidden)
      C-level entry points to the internal inspect function and can be
      used for C-level debugging (e.g., in conjunction with the p
      command in gdb).

    • Compiling R with --enable-strict-barrier now also enables
      additional checking for use of unprotected objects. In
      combination with gctorture() or gctorture2() and a C-level
      debugger this can be useful for tracking down memory protection


    • R CMD Rdiff is now implemented in R on Unix-alikes (as it has
      been on Windows since R 2.12.0).

    • R CMD build no longer does any cleaning in the supplied package
      directory: all the cleaning is done in the copy.

      It has a new option --install-args to pass arguments to R CMD
      INSTALL for --build (but not when installing to rebuild

      There is new option, --resave-data, to call
      tools::resaveRdaFiles() on the data directory, to compress
      tabular files (.tab, .csv etc) and to convert .R files to .rda
      files.  The default, --resave-data=gzip, is to do so in a way
      compatible even with years-old versions of R, but better
      compression is given by --resave-data=best, requiring R >=

      It now adds a datalist file for data directories of more than

      Patterns in .Rbuildignore are now also matched against all
      directory names (including those of empty directories).

      There is a new option, --compact-vignettes, to try reducing the
      size of PDF files in the inst/doc directory.  Currently this
      tries qpdf: other options may be used in future.

      When re-building vignettes and a inst/doc/Makefile file is found,
      make clean is run if the makefile has a clean: target.

      After re-building vignettes the default clean-up operation will
      remove any directories (and not just files) created during the
      process: e.g. one package created a .R_cache directory.

      Empty directories are now removed unless the option
      --keep-empty-dirs is given (and a few packages do deliberately
      include empty directories).

      If there is a field BuildVignettes in the package DESCRIPTION
      file with a false value, re-building the vignettes is skipped.

    • R CMD check now also checks for filenames that are
      case-insensitive matches to Windows' reserved file names with
      extensions, such as nul.Rd, as these have caused problems on some
      Windows systems.

      It checks for inefficiently saved data/*.rda and data/*.RData
      files, and reports on those large than 100Kb.  A more complete
      check (including of the type of compression, but potentially much
      slower) can be switched on by setting environment variable

      The types of files in the data directory are now checked, as
      packages are _still_ misusing it for non-R data files.

      It now extracts and runs the R code for each vignette in a
      separate directory and R process: this is done in the package's
      declared encoding.  Rather than call tools::checkVignettes(), it
      calls tool::buildVignettes() to see if the vignettes can be
      re-built as they would be by R CMD build.  Option --use-valgrind
      now applies only to these runs, and not when running code to
      rebuild the vignettes.  This version does a much better job of
      suppressing output from successful vignette tests.

      The 00check.log file is a more complete record of what is output
      to stdout: in particular contains more details of the tests.

      It now check all syntactically valid Rd usage entries, and warns
      about assignments (unless these give the usage of replacement

      .tar.xz compressed tarballs are now allowed, if tar supports them
      (and setting environment variable TAR to internal ensures so on
      all platforms).

    • R CMD check now warns if it finds inst/doc/makefile, and R CMD
      build renames such a file to inst/doc/Makefile.


    • Installing R no longer tries to find perl, and R CMD no longer
      tries to substitute a full path for awk nor perl - this was a
      legacy from the days when they were used by R itself.  Because a
      couple of packages do use awk, it is set as the make (rather than
      environment) variable AWK.

    • make check will now fail if there are differences from the
      reference output when testing package examples and if environment
      variable R_STRICT_PACKAGE_CHECK is set to a true value.

    • The C99 double complex type is now required.

      The C99 complex trigonometric functions (such as csin) are not
      currently required (FreeBSD lacks most of them): substitutes are
      used if they are missing.

    • The C99 system call va_copy is now required.

    • If environment variable R_LD_LIBRARY_PATH is set during
      configuration (for example in config.site) it is used unchanged
      in file etc/ldpaths rather than being appended to.

    • configure looks for support for OpenMP and if found compiles R
      with appropriate flags and also makes them available for use in
      packages: see ‘Writing R Extensions’.

      This is currently experimental, and is only used in R with a
      single thread for colSums() and colMeans().  Expect it to be more
      widely used in later versions of R.

      This can be disabled by the --disable-openmp flag.


    • R CMD INSTALL --clean now removes copies of a src directory which
      are created when multiple sub-architectures are in use.
      (Following a comment from Berwin Turlach.)

    • File R.css is now installed on a per-package basis (in the
      package's html directory) rather than in each library tree, and
      this is used for all the HTML pages in the package.  This helps
      when installing packages with static HTML pages for use on a
      webserver.  It will also allow future versions of R to use
      different stylesheets for the packages they install.

    • A top-level file .Rinstignore in the package sources can list (in
      the same way as .Rbuildignore) files under inst that should not
      be installed.  (Why should there be any such files?  Because all
      the files needed to re-build vignettes need to be under inst/doc,
      but they may not need to be installed.)

    • R CMD INSTALL has a new option --compact-docs to compact any PDFs
      under the inst/doc directory.  Currently this uses qpdf, which
      must be installed (see ‘Writing R Extensions’).

    • There is a new option --lock which can be used to cancel the
      effect of --no-lock or --pkglock earlier on the command line.

    • Option --pkglock can now be used with more than one package, and
      is now the default if only one package is specified.

    • Argument lock of install.packages() can now be use for Mac binary
      installs as well as for Windows ones.  The value "pkglock" is now
      accepted, as well as TRUE and FALSE (the default).

    • There is a new option --no-clean-on-error for R CMD INSTALL to
      retain a partially installed package for forensic analysis.

    • Packages with names ending in . are not portable since Windows
      does not work correctly with such directory names.  This is now
      warned about in R CMD check, and will not be allowed in R 2.14.x.

    • The vignette indices are more comprehensive (in the style of


    • require(save = TRUE) is defunct, and use of the save argument is

    • R CMD check --no-latex is defunct: use --no-manual instead.

    • R CMD Sd2Rd is defunct.

    • The gamma argument to hsv(), rainbow(), and rgb2hsv() is
      deprecated and no longer has any effect.

    • The previous options for R CMD build --binary (--auto-zip,
      --use-zip-data and --no-docs) are deprecated (or defunct): use
      the new option --install-args instead.

    • When a character value is used for the EXPR argument in switch(),
      only a single unnamed alternative value is now allowed.

    • The wrapper utils::link.html.help() is no longer available.

    • Zip-ing data sets in packages (and hence R CMD INSTALL options
      --use-zip-data and --auto-zip, as well as the ZipData: yes field
      in a DESCRIPTION file) is defunct.

      Installed packages with zip-ed data sets can still be used, but a
      warning that they should be re-installed will be given.

    • The ‘experimental’ alternative specification of a name space via
      .Export() etc is now defunct.

    • The option --unsafe to R CMD INSTALL is deprecated: use the
      identical option --no-lock instead.

    • The entry point pythag in Rmath.h is deprecated in favour of the
      C99 function hypot.  A wrapper for hypot is provided for R 2.13.x

    • Direct access to the "source" attribute of functions is
      deprecated; use deparse(fn, control="useSource") to access it,
      and removeSource(fn) to remove it.

    • R CMD build --binary is now formally deprecated: R CMD INSTALL
      --build has long been the preferred alternative.

    • Single-character package names are deprecated (and R is already
      disallowed to avoid confusion in Depends: fields).


    • drop.terms and the [ method for class "terms" no longer add back
      an intercept.  (Reported by Niels Hansen.)

    • aggregate preserves the class of a column (e.g. a date) under
      some circumstances where it discarded the class previously.

    • p.adjust() now always returns a vector result, as documented.  In
      previous versions it copied attributes (such as dimensions) from
      the p argument: now it only copies names.

    • On PDF and PostScript devices, a line width of zero was recorded
      verbatim and this caused problems for some viewers (a very thin
      line combined with a non-solid line dash pattern could also cause
      a problem).  On these devices, the line width is now limited at
      0.01 and for very thin lines with complex dash patterns the
      device may force the line dash pattern to be solid.  (Reported by
      Jari Oksanen.)

    • The str() method for class "POSIXt" now gives sensible output for
      0-length input.

    • The one- and two-argument complex maths functions failed to warn
      if NAs were generated (as their numeric analogues do).

    • Added .requireCachedGenerics to the dont.mind list for library()
      to avoid warnings about duplicates.

    • $<-.data.frame messed with the class attribute, breaking any S4
      subclass.  The S4 data.frame class now has its own $<- method,
      and turns dispatch on for this primitive.

    • Map() did not look up a character argument f in the correct
      frame, thanks to lazy evaluation.  (PR#14495)

    • file.copy() did not tilde-expand from and to when to was a
      directory.  (PR#14507)

    • It was possible (but very rare) for the loading test in R CMD
      INSTALL to crash a child R process and so leave around a lock
      directory and a partially installed package.  That test is now
      done in a separate process.

    • plot(<formula>, data=<matrix>,..) now works in more cases;
      similarly for points(), lines() and text().

    • edit.default() contained a manual dispatch for matrices (the
      "matrix" class didn't really exist when it was written).  This
      caused an infinite recursion in the no-GUI case and has now been

    • data.frame(check.rows = TRUE) sometimes worked when it should
      have detected an error.  (PR#14530)

    • scan(sep= , strip.white=TRUE) sometimes stripped trailing spaces
      from within quoted strings.  (The real bug in PR#14522.)

    • The rank-correlation methods for cor() and cov() with use =
      "complete.obs" computed the ranks before removing missing values,
      whereas the documentation implied incomplete cases were removed
      first.  (PR#14488)

      They also failed for 1-row matrices.

    • The perpendicular adjustment used in placing text and expressions
      in the margins of plots was not scaled by par("mex"). (Part of

    • Quartz Cocoa device now catches any Cocoa exceptions that occur
      during the creation of the device window to prevent crashes.  It
      also imposes a limit of 144 ft^2 on the area used by a window to
      catch user errors (unit misinterpretation) early.

    • The browser (invoked by debug(), browser() or otherwise) would
      display attributes such as "wholeSrcref" that were intended for
      internal use only.

    • R's internal filename completion now properly handles filenames
      with spaces in them even when the readline library is used.  This
      resolves PR#14452 provided the internal filename completion is
      used (e.g., by setting rc.settings(files = TRUE)).

    • Inside uniroot(f, ...), -Inf function values are now replaced by
      a maximally *negative* value.

    • rowsum() could silently over/underflow on integer inputs
      (reported by Bill Dunlap).

    • as.matrix() did not handle "dist" objects with zero rows.

CHANGES IN R VERSION 2.12.2 patched:


    • max() and min() work harder to ensure that NA has precedence over
      NaN, so e.g. min(NaN, NA) is NA.  (This was not previously
      documented except for within a single numeric vector, where
      compiler optimizations often defeated the code.)


    • A change to the C function R_tryEval had broken error messages in
      S4 method selection; the error message is now printed.

    • PDF output with a non-RGB color model used RGB for the line
      stroke color.  (PR#14511)

    • stats4::BIC() assumed without checking that an object of class
      "logLik" has an "nobs" attribute: glm() fits did not and so BIC()
      failed for them.

    • In some circumstances a one-sided mantelhaen.test() reported the
      p-value for the wrong tail.  (PR#14514)

    • Passing the invalid value lty = NULL to axis() sent an invalid
      value to the graphics device, and might cause the device to

    • Sweave() with concordance=TRUE could lead to invalid PDF files;
      Sweave.sty has been updated to avoid this.

    • Non-ASCII characters in the titles of help pages were not
      rendered properly in some locales, and could cause errors or
      warnings.    • checkRd() gave a spurious error if the \href macro was used.



Oracle launches XBRL extension for financial domains

What is XBRL and how does it work?


How XBRL Works
XBRL is a member of the family of languages based on XML, or Extensible Markup Language, which is a standard for the electronic exchange of data between businesses and on the internet.  Under XML, identifying tags are applied to items of data so that they can be processed efficiently by computer software.

XBRL is a powerful and flexible version of XML which has been defined specifically to meet the requirements of business and financial information.  It enables unique identifying tags to be applied to items of financial data, such as ‘net profit’.  However, these are more than simple identifiers.  They provide a range of information about the item, such as whether it is a monetary item, percentage or fraction.  XBRL allows labels in any language to be applied to items, as well as accounting references or other subsidiary information.

XBRL can show how items are related to one another.  It can thus represent how they are calculated.  It can also identify whether they fall into particular groupings for organisational or presentational purposes.  Most importantly, XBRL is easily extensible, so companies and other organisations can adapt it to meet a variety of special requirements.

The rich and powerful structure of XBRL allows very efficient handling of business data by computer software.  It supports all the standard tasks involved in compiling, storing and using business data.  Such information can be converted into XBRL by suitable mapping processes or generated in XBRL by software.  It can then be searched, selected, exchanged or analysed by computer, or published for ordinary viewing.

also see





and from-


With more than 7,000 new U.S. companies facing extensible business reporting language (XBRL) filing mandates in 2011, Oracle has released a free XBRL extension on top of the latest release of Oracle Database.

Oracle’s XBRL extension leverages Oracle Database 11g Release 2 XML to manage the collection, validation, storage, and analysis of XBRL data. It enables organizations to create one or more back-end XBRL repositories based on Oracle Database, providing secure XBRL storage and query-ability with a set of XBRL-specific services.

In addition, the extension integrates easily with Oracle Business Intelligence Suite Enterprise Edition to provide analytics, plus interactive development environments (IDEs) and design tools for creating and editing XBRL taxonomies.

The Other Side of XBRL
“While the XBRL mandate continues to grow, the feedback we keep hearing from the ‘other side’ of XRBL—regulators, academics, financial analysts, and investors—is that they lack sufficient tools and historic data to leverage the full potential of XBRL,” says John O’Rourke, vice president of product marketing, Oracle.

However, O’Rourke says this is quickly changing as XBRL mandates enter their third year—and more and more companies have to comply. While the new extension should be attractive to organizations that produce XBRL filings, O’Rourke expects it will prove particularly valuable to regulators, stock exchanges, universities, and other organizations that need to collect, analyze, and disseminate XBRL-based filings.

Outsourcing, a Bolt-on Solution, or Integrated XBRL Tagging
Until recently, reporting organizations had to choose between expensive third-party outsourcing or manual, in-house tagging with bolt-on solutions— both of which introduce the possibility of error.

In response, Oracle launched Oracle Hyperion Disclosure Management, which provides an XBRL tagging solution that is integrated with the financial close and reporting process for fast and reliable XBRL report submission—without relying on third-party providers. The solution enables organizations to

  • Author regulatory filings in Microsoft Office and “hot link” them directly to financial reporting systems so they can be easily updated
  • Graphically perform XBRL tagging at several levels—within Microsoft Office, within EPM system reports, or in the data source metadata
  • Modify or extend XBRL taxonomies before the mapping process, as well as set up multiple taxonomies
  • Create and validate final XBRL instance documents before submission


What to do if you see a possible GPL violation

GNU Lesser General Public License
Image via Wikipedia

Well I have played with software (mostly but not exclusively) analytical, and I admire the zeal and energy of both open source and closed source practioners- all having relatively decent people executing strategies their investors or owners tell them to do (closed source) or motivated by their own self sense of cool-change the world-openness (open source)

What I dont get is people stealing open source code- repackaging without adding major contributions- claiming patent pending stuff- and basically making money by creating CLOSED source from the open source software-(as open source is yet to break the enterprise glass cieling)

you are either open source or you arent.

bi- sexuality is okay. bi-codability is not.

Next time you see someone stealing some community’s open source code- refer to this excellent link.


But, we cannot act on our own if we do not hold copyright. Thus, be sure to find out who the copyright holders of the software are before reporting a violation.


Violations of the GNU Licenses

If you think you see a violation of the GNU GPLLGPLAGPL, or FDL, the first thing you should do is double-check the facts:

  • Does the distribution contain a copy of the License?
  • Does it clearly state which software is covered by the License? Does it say anything misleading, perhaps giving the impression that something is covered by the License when in fact it is not?
  • Is source code included in the distribution?
  • Is a written offer for source code included with a distribution of just binaries?
  • Is the available source code complete, or is it designed for linking in other non-free modules?

If there seems to be a real violation, the next thing you need to do is record the details carefully:

  • the precise name of the product
  • the name of the person or organization distributing it
  • email addresses, postal addresses and phone numbers for how to contact the distributor(s)
  • the exact name of the package whose license is violated
  • how the license was violated:
    • Is the copyright notice of the copyright holder included?
    • Is the source code completely missing?
    • Is there a written offer for source that’s incomplete in some way? This could happen if it provides a contact address or network URL that’s somehow incorrect.
    • Is there a copy of the license included in the distribution?
    • Is some of the source available, but not all? If so, what parts are missing?

The more of these details that you have, the easier it is for the copyright holder to pursue the matter.

Once you have collected the details, you should send a precise report to the copyright holder of the packages that are being misused. The copyright holder is the one who is legally authorized to take action to enforce the license.

If the copyright holder is the Free Software Foundation, please send the report to <license-violation@gnu.org>. It’s important that we be able to write back to you to get more information about the violation or product. So, if you use an anonymous remailer, please provide a return path of some sort. If you’d like to encrypt your correspondence, just send a brief mail saying so, and we’ll make appropriate arrangements.

Note that the GPL, and other copyleft licenses, are copyright licenses. This means that only the copyright holders are empowered to act against violations. The FSF acts on all GPL violations reported on FSF copyrighted code, and we offer assistance to any other copyright holder who wishes to do the same.

But, we cannot act on our own if we do not hold copyright. Thus, be sure to find out who the copyright holders of the software are before reporting a violation.


Heritage Health Prize- Data Mining Contest for 3mill USD

An animation of the quicksort algorithm sortin...
Image via Wikipedia

If Netflix was about 1 mill USD to better online video choices, here is a chance to earn serious money, write great code, and save lives!

From http://www.heritagehealthprize.com/

Heritage Health Prize
Launching April 4


More than 71 Million individuals in the United States are admitted to
hospitals each year, according to the latest survey from the American
Hospital Association. Studies have concluded that in 2006 well over
$30 billion was spent on unnecessary hospital admissions. Each of
these unnecessary admissions took away one hospital bed from someone
else who needed it more.

Prize Goal & Participation

The goal of the prize is to develop a predictive algorithm that can identify patients who will be admitted to the hospital within the next year, using historical claims data.

Official registration will open in 2011, after the launch of the prize. At that time, pre-registered teams will be notified to officially register for the competition. Teams must consent to be bound by final competition rules.

Registered teams will develop and test their algorithms. The winning algorithm will be able to predict patients at risk for an unplanned hospital admission with a high rate of accuracy. The first team to reach the accuracy threshold will have their algorithms confirmed by a judging panel. If confirmed, a winner will be declared.

The competition is expected to run for approximately two years. Registration will be open throughout the competition.

Data Sets

Registered teams will be granted access to two separate datasets of de-identified patient claims data for developing and testing algorithms: a training dataset and a quiz/test dataset. The datasets will be comprised of de-identified patient data. The datasets will include:

  • Outpatient encounter data
  • Hospitalization encounter data
  • Medication dispensing claims data, including medications
  • Outpatient laboratory data, including test outcome values

The data for each de-identified patient will be organized into two sections: “Historical Data” and “Admission Data.” Historical Data will represent three years of past claims data. This section of the dataset will be used to predict if that patient is going to be admitted during the Admission Data period. Admission Data represents previous claims data and will contain whether or not a hospital admission occurred for that patient; it will be a binary flag.

DataThe training dataset includes several thousand anonymized patients and will be made available, securely and in full, to any registered team for the purpose of developing effective screening algorithms.

The quiz/test dataset is a smaller set of anonymized patients. Teams will only receive the Historical Data section of these datasets and the two datasets will be mixed together so that teams will not be aware of which de-identified patients are in which set. Teams will make predictions based on these data sets and submit their predictions to HPN through the official Heritage Health Prize web site. HPN will use the Quiz Dataset for the initial assessment of the Team’s algorithms. HPN will evaluate and report back scores to the teams through the prize website’s leader board.

Scores from the final Test Dataset will not be made available to teams until the accuracy thresholds are passed. The test dataset will be used in the final judging and results will be kept hidden. These scores are used to preserve the integrity of scoring and to help validate the predictive algorithms.

Teams can begin developing and testing their algorithms as soon as they are registered and ready. Teams will log onto the official Heritage Health Prize website and submit their predictions online. Comparisons will be run automatically and team accuracy scores will be posted on the leader board. This score will be only on a portion of the predictions submitted (the Quiz Dataset), the additional results will be kept back (the Test Dataset).


Once a team successfully scores above the accuracy thresholds on the online testing (quiz dataset), final judging will occur. There will be three parts to this judging. First, the judges will confirm that the potential winning team’s algorithm accurately predicts patient admissions in the Test Dataset (again, above the thresholds for accuracy).

Next, the judging panel will confirm that the algorithm does not identify patients and use external data sources to derive its predictions. Lastly, the panel will confirm that the team’s algorithm is authentic and derives its predictive power from the datasets, not from hand-coding results to improve scores. If the algorithm meets these three criteria, it will be declared the winner.

Failure to meet any one of these three parts will disqualify the team and the contest will continue. The judges reserve the right to award second and third place prizes if deemed applicable.


HIGHLIGHTS from REXER Survey :R gives best satisfaction

Simple graph showing hierarchical clustering. ...
Image via Wikipedia

A Summary report from Rexer Analytics Annual Survey


HIGHLIGHTS from the 4th Annual Data Miner Survey (2010):


•   FIELDS & GOALS: Data miners work in a diverse set of fields.  CRM / Marketing has been the #1 field in each of the past four years.  Fittingly, “improving the understanding of customers”, “retaining customers” and other CRM goals are also the goals identified by the most data miners surveyed.


•   ALGORITHMS: Decision trees, regression, and cluster analysis continue to form a triad of core algorithms for most data miners.  However, a wide variety of algorithms are being used.  This year, for the first time, the survey asked about Ensemble Models, and 22% of data miners report using them.
A third of data miners currently use text mining and another third plan to in the future.


•   MODELS: About one-third of data miners typically build final models with 10 or fewer variables, while about 28% generally construct models with more than 45 variables.


•   TOOLS: After a steady rise across the past few years, the open source data mining software R overtook other tools to become the tool used by more data miners (43%) than any other.  STATISTICA, which has also been climbing in the rankings, is selected as the primary data mining tool by the most data miners (18%).  Data miners report using an average of 4.6 software tools overall.  STATISTICA, IBM SPSS Modeler, and R received the strongest satisfaction ratings in both 2010 and 2009.


•   TECHNOLOGY: Data Mining most often occurs on a desktop or laptop computer, and frequently the data is stored locally.  Model scoring typically happens using the same software used to develop models.  STATISTICA users are more likely than other tool users to deploy models using PMML.


•   CHALLENGES: As in previous years, dirty data, explaining data mining to others, and difficult access to data are the top challenges data miners face.  This year data miners also shared best practices for overcoming these challenges.  The best practices are available online.


•   FUTURE: Data miners are optimistic about continued growth in the number of projects they will be conducting, and growth in data mining adoption is the number one “future trend” identified.  There is room to improve:  only 13% of data miners rate their company’s analytic capabilities as “excellent” and only 8% rate their data quality as “very strong”.


Please contact us if you have any questions about the attached report or this annual research program.  The 5th Annual Data Miner Survey will be launching next month.  We will email you an invitation to participate.


Information about Rexer Analytics is available at www.RexerAnalytics.com. Rexer Analytics continues their impressive journey see http://www.rexeranalytics.com/Clients.html

|My only thought- since most data miners are using multiple tools including free tools as well as paid software, Perhaps a pie chart of market share by revenue and volume would be handy.

Also some ideas on comparing diverse data mining projects by data size, or complexity.