Moving from OpenDNS to Google DNS

It is best to use a DNS resolution service to avoid targeted attacks on your machine esp if you use the browser a lot. and it is quite fast!! Takes 2 minutes to set it up even for non geeks

I was getting slower browsing speeds on OpenDNS http://www.opendns.com/

so I switched to Google DNS (though I am not sure how people in Iran and China – who have a much greater need for DNS verification services will get secure resolution of DNS)

http://code.google.com/speed/public-dns/

What is Google Public DNS?

Google Public DNS is a free, global Domain Name System (DNS) resolution service, that you can use as an alternative to your current DNS provider.

To try it out:

  • Configure your network settings to use the IP addresses 8.8.8.8 and 8.8.4.4 as your DNS servers or
  • Read our configuration instructions.

New! For IPv6 addresses, see our configuration instructions.

If you decide to try Google Public DNS, your client programs will perform all DNS lookups using Google Public DNS.

Why does DNS matter?

The DNS protocol is an important part of the web’s infrastructure, serving as the Internet’s phone book: every time you visit a website, your computer performs a DNS lookup. Complex pages often require multiple DNS lookups before they start loading, so your computer may be performing hundreds of lookups a day.

Why should you try Google Public DNS?

By using Google Public DNS you can:

Machine Learning for Hackers – #rstats

I got the incredible and intriguing Machine Learning for Hackers for just $15.99 for an electronic copy from O Reilly Media. (Deal of the Day!)

It has just been launched this month!!

It is an incredible book- and I really  like the way O Reilly has made it so easy to download E Books

I am trying to read it while trying to a write a whole lot of other stuff— and it seems easy to read and understand even for non-hackers like me. Esp with Stanford delaying its online machine learning course- this is one handy e-book to have  to get you started in ML and data science!!

Click the image to see the real deal.

http://shop.oreilly.com/product/0636920018483.do

 

Self Driving Cars , Geo Coded Ads, End of Privacy

Imagine a world in which your car tracks everywhere you go. Over a period of time, it builds up a database of your driving habits, how long you stay at particular kinds of dining places, entertainment places (ahem!) , and the days, and times you do it.  You can no longer go to massage parlours without your data being checked by your car software admin (read – your home admin)

And that data is mined using machine learning algols to give you better ads for pizzas, or a reminder for food after every 3 hours , or an ad for beer every Thursday after 8 pm .

Welcome Brave New World!

Analytics for Cyber Conflict

 

The emerging use of Analytics and Knowledge Discovery in Databases for Cyber Conflict and Trade Negotiations

 

The blog post is the first in series or articles on cyber conflict and the use of analytics for targeting in both offense and defense in conflict situations.

 

It covers knowledge discovery in four kinds of databases (so chosen because of perceived importance , sensitivity, criticality and functioning of the geopolitical economic system)-

  1. Databases on Unique Identity Identifiers- including next generation biometric databases connected to Government Initiatives and Banking, and current generation databases of identifiers like government issued documents made online
  2. Databases on financial details -This includes not only traditional financial service providers but also online databases with payment details collected by retail product selling corporates like Sony’s Playstation Network, Microsoft ‘s XBox and
  3. Databases on contact details – including those by offline businesses collecting marketing databases and contact details
  4. Databases on social behavior- primarily collected by online businesses like Facebook , and other social media platforms.

It examines the role of

  1. voluntary privacy safeguards and government regulations ,

  2. weak cryptographic security of databases,

  3. weakness in balancing marketing ( maximized data ) with privacy (minimized data)

  4. and lastly the role of ownership patterns in database owning corporates

A small distinction between cyber crime and cyber conflict is that while cyber crime focusses on stealing data, intellectual property and information  to primarily maximize economic gains

cyber conflict focuses on stealing information and also disrupt effective working of database backed systems in order to gain notional competitive advantages in economics as well as geo-politics. Cyber terrorism is basically cyber conflict by non-state agents or by designated terrorist states as defined by the regulations of the “target” entity. A cyber attack is an offensive action related to cyber-infrastructure (like the Stuxnet worm that disabled uranium enrichment centrifuges of Iran). Cyber attacks and cyber terrorism are out of scope of this paper, we will concentrate on cyber conflicts involving databases.

Some examples are given here-

Types of Knowledge Discovery in –

1) Databases on Unique Identifiers- including biometric databases.

Unique Identifiers or primary keys for identifying people are critical for any intensive knowledge discovery program. The unique identifier generated must be extremely secure , and not liable to reverse engineering of the cryptographic hash function.

For biometric databases, an interesting possibility could be determining the ethnic identity from biometric information, and also mapping relatives. Current biometric information that is collected is- fingerprint data, eyes iris data, facial data. A further feature could be adding in voice data as a part of biometric databases.

This is subject to obvious privacy safeguards.

For example, Google recently unveiled facial recognition to unlock Android 4.0 mobiles, only to find out that the security feature could easily be bypassed by using a photo of the owner.

 

 

Example of Biometric Databases

In Afghanistan more than 2 million Afghans have contributed iris, fingerprint, facial data to a biometric database. In India, 121 million people have already been enrolled in the largest biometric database in the world. More than half a million customers of the Tokyo Mitsubishi Bank are are already using biometric verification at ATMs.

Examples of Breached Online Databases

In 2011, Playstation Network by Sony (PSN) lost data of 77 million customers including personal information and credit card information. Additionally data of 24 million customers were lost by Sony’s Sony Online Entertainment. The websites of open source platforms like SourceForge, WineHQ and Kernel.org were also broken into 2011. Even retailers like McDonald and Walgreen reported database breaches.

 

The role of cyber conflict arises in the following cases-

  1. Databases are online for accessing and authentication by proper users. Databases can be breached remotely by non-owners ( or “perpetrators”) non with much lesser chance of intruder identification, detection and penalization by regulators, or law enforcers (or “protectors”) than offline modes of intellectual property theft.

  2. Databases are valuable to external agents (or “sponsors”) subsidizing ( with finance, technology, information, motivation) the perpetrators for intellectual property theft. Databases contain information that can be used to disrupt the functioning of a particular economy, corporation (or “ primary targets”) or for further chain or domino effects in accessing other data (or “secondary targets”)

  3. Loss of data is more expensive than enhanced cost of security to database owners

  4. Loss of data is more disruptive to people whose data is contained within the database (or “customers”)

So the role play for different people for these kind of databases consists of-

1) Customers- who are in the database

2) Owners -who own the database. They together form the primary and secondary targets.

3) Protectors- who help customers and owners secure the databases.

and

1) Sponsors- who benefit from the theft or disruption of the database

2) Perpetrators- who execute the actual theft and disruption in the database

The use of topic models and LDA is known for making data reduction on text, and the use of data visualization including tied to GPS based location data is well known for investigative purposes, but the increasing complexity of both data generation and the sophistication of machine learning driven data processing makes this an interesting area to watch.

 

 

The next article in this series will cover-

the kind of algorithms that are currently or being proposed for cyber conflict, the role of non state agents , and what precautions can knowledge discovery in databases practitioners employ to avoid breaches of security, ethics, and regulation.

Citations-

  1. Michael A. Vatis , CYBER ATTACKS DURING THE WAR ON TERRORISM: A PREDICTIVE ANALYSIS Dartmouth College (Institute for Security Technology Studies).
  2. From Data Mining to Knowledge Discovery in Databases Usama Fayyad, Gregory Piatetsky-Shapiro, and Padhraic Smyt

Topic Models

Some stuff on Topic Models-

http://en.wikipedia.org/wiki/Topic_model

In machine learning and natural language processing, a topic model is a type of statistical model for discovering the abstract “topics” that occur in a collection of documents. An early topic model was probabilistic latent semantic indexing (PLSI), created by Thomas Hofmann in 1999.[1] Latent Dirichlet allocation (LDA), perhaps the most common topic model currently in use, is a generalization of PLSI developed by David Blei, Andrew Ng, and Michael Jordan in 2002, allowing documents to have a mixture of topics.[2] Other topic models are generally extensions on LDA, such as Pachinko allocation, which improves on LDA by modeling correlations between topics in addition to the word correlations which constitute topics. Although topic models were first described and implemented in the context of natural language processing, they have applications in other fields such as bioinformatics.

http://en.wikipedia.org/wiki/Latent_Dirichlet_allocation

In statistics, latent Dirichlet allocation (LDA) is a generative model that allows sets of observations to be explained by unobserved groups that explain why some parts of the data are similar. For example, if observations are words collected into documents, it posits that each document is a mixture of a small number of topics and that each word’s creation is attributable to one of the document’s topics. LDA is an example of a topic model

David M Blei’s page on Topic Models-

http://www.cs.princeton.edu/~blei/topicmodeling.html

The topic models mailing list is a good forum for discussing topic modeling.

In R,

Some resources I compiled on Slideshare based on the above- Continue reading “Topic Models”

JMP and R – #rstats

An amazing example of R being used sucessfully in combination (and not is isolation) with other enterprise software is the add-ins functionality of JMP and it’s R integration.

See the following JMP add-ins which use R

http://support.sas.com/demosdownloads/downarea_t4.jsp?productID=110454&jmpflag=Y

JMP Add-in: Multidimensional Scaling using R

This add-in creates a new menu command under the Add-Ins Menu in the submenu R Add-ins. The script will launch a custom dialog (or prompt for a JMP data table is one is not already open) where you can cast columns into roles for performing MDS on the data table. The analysis results in a data table of MDS dimensions and associated output graphics. MDS is a dimension reduction method that produces coordinates in Euclidean space (usually 2D, 3D) that best represent the structure of a full distance/dissimilarity matrix. MDS requires that input be a symmetric dissimilarity matrix. Input to this application can be data that is already in the form of a symmetric dissimilarity matrix or the dissimilarity matrix can be computed based on the input data (where dissimilarity measures are calculated between rows of the input data table in R).

Submitted by: Kelci Miclaus SAS employee Initiative: All
Application: Add-Ins Analysis: Exploratory Data Analysis

Chernoff Faces Add-in

One way to plot multivariate data is to use Chernoff faces. For each observation in your data table, a face is drawn such that each variable in your data set is represented by a feature in the face. This add-in uses JMP’s R integration functionality to create Chernoff faces. An R install and the TeachingDemos R package are required to use this add-in.

Submitted by: Clay Barker SAS employee Initiative: All
Application: Add-Ins Analysis: Data Visualization

Support Vector Machine for Classification

By simply opening a data table, specifying X, Y variables, selecting a kernel function, and specifying its parameters on the user-friendly dialog, you can build a classification model using Support Vector Machine. Please note that R package ‘e1071’ should be installed before running this dialog. The package can be found from http://cran.r-project.org/web/packages/e1071/index.html.

Submitted by: Jong-Seok Lee SAS employee Initiative: All
Application: Add-Ins Analysis: Exploratory Data Analysis/Mining

Penalized Regression Add-in

This add-in uses JMP’s R integration functionality to provide access to several penalized regression methods. Methods included are the LASSO (least absolutee shrinkage and selection operator, LARS (least angle regression), Forward Stagewise, and the Elastic Net. An R install and the “lars” and “elasticnet” R packages are required to use this add-in.

Submitted by: Clay Barker SAS employee Initiative: All
Application: Add-Ins Analysis: Regression

MP Addin: Univariate Nonparametric Bootstrapping

This script performs simple univariate, nonparametric bootstrap sampling by using the JMP to R Project integration. A JMP Dialog is built by the script where the variable you wish to perform bootstrapping over can be specified. A statistic to compute for each bootstrap sample is chosen and the data are sent to R using new JSL functionality available in JMP 9. The boot package in R is used to call the boot() function and the boot.ci() function to calculate the sample statistic for each bootstrap sample and the basic bootstrap confidence interval. The results are brought back to JMP and displayed using the JMP Distribution platform.

Submitted by: Kelci Miclaus SAS employee Initiative: All
Application: Add-Ins Analysis: Basic Statistics

Free Machine Learning at Stanford

One of the cornerstones of the technology revolution, Stanford now offers some courses for free via distance learning. One of the more exciting courses is of course- machine learning

 

 

http://jan2012.ml-class.org/

About The Course

This course provides a broad introduction to machine learning, datamining, and statistical pattern recognition. Topics include: (i) Supervised learning (parametric/non-parametric algorithms, support vector machines, kernels, neural networks). (ii) Unsupervised learning (clustering, dimensionality reduction, recommender systems, deep learning). (iii) Best practices in machine learning (bias/variance theory; innovation process in machine learning and AI). The course will also draw from numerous case studies and applications, so that you’ll also learn how to apply learning algorithms to building smart robots (perception, control), text understanding (web search, anti-spam), computer vision, medical informatics, audio, database mining, and other areas.

The Instructor

Professor Andrew Ng is Director of the Stanford Artificial Intelligence Lab, the main AI research organization at Stanford, with 20 professors and about 150 students/post docs. At Stanford, he teaches Machine Learning, which with a typical enrollment of 350 Stanford students, is among the most popular classes on campus. His research is primarily on machine learning, artificial intelligence, and robotics, and most universities doing robotics research now do so using a software platform (ROS) from his group.

 

  1. When does the class start?The class will start in January 2012 and will last approximately ten weeks.
  2. What is the format of the class?The class will consist of lecture videos, which are broken into small chunks, usually between eight and twelve minutes each. Some of these may contain integrated quiz questions. There will also be standalone quizzes that are not part of video lectures, and programming assignments.
  3. Will the text of the lectures be available?We hope to transcribe the lectures into text to make them more accessible for those not fluent in English. Stay tuned.
  4. Do I need to watch the lectures live?No. You can watch the lectures at your leisure.
  5. Can online students ask questions and/or contact the professor?Yes, but not directly There is a Q&A forum in which students rank questions and answers, so that the most important questions and the best answers bubble to the top. Teaching staff will monitor these forums, so that important questions not answered by other students can be addressed.
  6. Will other Stanford resources be available to online students?No.
  7. How much programming background is needed for the course?The course includes programming assignments and some programming background will be helpful.
  8. Do I need to buy a textbook for the course?No.
  9. How much does it cost to take the course?Nothing: it’s free!
  10. Will I get university credit for taking this course?No.Interested in learning machine learning-

    Well here is the website to enroll http://jan2012.ml-class.org/