Revolution R Enterprise 6.0 launched!

Just got the email-more software is good news!

Revolution R Enterprise 6.0 for 32-bit and 64-bit Windows and 64-bit Red Hat Enterprise Linux (RHEL 5.x and RHEL 6.x) features an updated release of the RevoScaleR package that provides fast, scalable data management and data analysis: the same code scales from data frames to local, high-performance .xdf files to data distributed across a Windows HPC Server cluster or IBM Platform Computing LSF cluster.  RevoScaleR also allows distribution of the execution of essentially any R function across cores and nodes, delivering the results back to the user.

Detailed information on what’s new in 6.0 and known issues:
http://www.revolutionanalytics.com/doc/README_RevoEnt_Windows_6.0.0.pdf

and from the manual-lots of function goodies for Big Data

 

  • IBM Platform LSF Cluster support [Linux only]. The new RevoScaleR function, RxLsfCluster, allows you to create a distributed compute context for the Platform LSF workload manager.
  •  Azure Burst support added for Microsoft HPC Server [Windows only]. The new RevoScaleR function, RxAzureBurst, allows you to create a distributed compute context to have computations performed in the cloud using Azure Burst
  • The rxExec function allows distributed execution of essentially any R function across cores and nodes, delivering the results back to the user.
  • functions RxLocalParallel and RxLocalSeq allow you to create compute context objects for local parallel and local sequential computation, respectively.
  • RxForeachDoPar allows you to create a compute context using the currently registered foreach parallel backend (doParallel, doSNOW, doMC, etc.). To execute rxExec calls, simply register the parallel backend as usual, then set your compute context as follows: rxSetComputeContext(RxForeachDoPar())
  • rxSetComputeContext and rxGetComputeContext simplify management of compute contexts.
  • rxGlm, provides a fast, scalable, distributable implementation of generalized linear models. This expands the list of full-featured high performance analytics functions already available: summary statistics (rxSummary), cubes and cross tabs (rxCube,rxCrossTabs), linear models (rxLinMod), covariance and correlation matrices (rxCovCor),
    binomial logistic regression (rxLogit), and k-means clustering (rxKmeans)example: a Tweedie family with 1 million observations and 78 estimated coefficients (categorical data)
    took 17 seconds with rxGlm compared with 377 seconds for glm on a quadcore laptop

     

    and easier working with R’s big brother SAS language

     

    RevoScaleR high-performance analysis functions will now conveniently work directly with a variety of external data sources (delimited and fixed format text files, SAS files, SPSS files, and ODBC data connections). New functions are provided to create data source objects to represent these data sources (RxTextData, RxOdbcData, RxSasData, and RxSpssData), which in turn can be specified for the ‘data’ argument for these RevoScaleR analysis functions: rxHistogramrxSummary, rxCube, rxCrossTabs, rxLinMod, rxCovCor, rxLogit, and rxGlm.


    example, 

    you can analyze a SAS file directly as follows:


    # Create a SAS data source with information about variables and # rows to read in each chunk

    sasDataFile <- file.path(rxGetOption(“sampleDataDir”),”claims.sas7bdat”)
    sasDS <- RxSasData(sasDataFile, stringsAsFactors = TRUE,colClasses = c(RowNum = “integer”),rowsPerRead = 50)

    # Compute and draw a histogram directly from the SAS file
    rxHistogram( ~cost|type, data = sasDS)
    # Compute summary statistics
    rxSummary(~., data = sasDS)
    # Estimate a linear model
    linModObj <- rxLinMod(cost~age + car_age + type, data = sasDS)
    summary(linModObj)
    # Import a subset into a data frame for further inspection
    subData <- rxImport(inData = sasDS, rowSelection = cost > 400,
    varsToKeep = c(“cost”, “age”, “type”))
    subData

 

The installation instructions and instructions for getting started with Revolution R Enterprise & RevoDeployR for Windows: http://www.revolutionanalytics.com/downloads/instructions/windows.php

Software Review- BigML.com – Machine Learning meets the Cloud

I had a chance to dekko the new startup BigML https://bigml.com/ and was suitably impressed by the briefing and my own puttering around the site. Here is my review-

1) The website is very intutively designed- You can create a dataset from an uploaded file in one click and you can create a Decision Tree model in one click as well. I wish other cloud computing websites like  Google Prediction API make design so intutive and easy to understand. Also unlike Google Prediction API, the models are not black box models, but have a description which can be understood.

2) It includes some well known data sources for people trying it out. They were kind enough to offer 5 invite codes for readers of Decisionstats ( if you want to check it yourself, use the codes below the post, note they are one time only , so the first five get the invites.

BigML is still invite only but plan to get into open release soon.

3) Data Sources can only be by uploading files (csv) but they plan to change this hopefully to get data from buckets (s3? or Google?) and from URLs.

4) The one click operation to convert data source into a dataset shows a histogram (distribution) of individual variables.The back end is clojure , because the team explained it made the easiest sense and fit with Java. The good news (?) is you would never see the clojure code at the back end. You can read about it from http://clojure.org/

As cloud computing takes off (someday) I expect clojure popularity to take off as well.

Clojure is a dynamic programming language that targets the Java Virtual Machine (and the CLR, and JavaScript). It is designed to be a general-purpose language, combining the approachability and interactive development of a scripting language with an efficient and robust infrastructure for multithreaded programming. Clojure is a compiled language – it compiles directly to JVM bytecode, yet remains completely dynamic. Every feature supported by Clojure is supported at runtime. Clojure provides easy access to the Java frameworks, with optional type hints and type inference, to ensure that calls to Java can avoid reflection.

Clojure is a dialect of Lisp

 

5) As of now decision trees is the only distributed algol, but they expect to roll out other machine learning stuff soon. Hopefully this includes regression (as logit and linear) and k means clustering. The trees are created and pruned in real time which gives a slightly animated (and impressive effect). and yes model building is an one click operation.

The real time -live pruning is really impressive and I wonder why /how it can ever be replicated in other software based on desktop, because of the sheer interactive nature.

 

Making the model is just half the work. Creating predictions and scoring the model is what is really the money-earner. It is one click and customization is quite intuitive. It is not quite PMML compliant yet so I hope some Zemanta like functionality can be added so huge amounts of models can be applied to predictions or score data in real time.

 

If you are a developer/data hacker, you should check out this section too- it is quite impressive that the designers of BigML have planned for API access so early.

https://bigml.com/developers

BigML.io gives you:

  • Secure programmatic access to all your BigML resources.
  • Fully white-box access to your datasets and models.
  • Asynchronous creation of datasets and models.
  • Near real-time predictions.

 

Note: For your convenience, some of the snippets below include your real username and API key.

Please keep them secret.

REST API

BigML.io conforms to the design principles of Representational State Transfer (REST)BigML.io is enterely HTTP-based.

BigML.io gives you access to four basic resources: SourceDatasetModel and Prediction. You cancreatereadupdate, and delete resources using the respective standard HTTP methods: POSTGET,PUT and DELETE.

All communication with BigML.io is JSON formatted except for source creation. Source creation is handled with a HTTP PUT using the “multipart/form-data” content-type

HTTPS

All access to BigML.io must be performed over HTTPS

and https://bigml.com/developers/quick_start ( In think an R package which uses JSON ,RCurl  would further help in enhancing ease of usage).

 

Summary-

Overall a welcome addition to make software in the real of cloud computing and statistical computation/business analytics both easy to use and easy to deploy with fail safe mechanisms built in.

Check out https://bigml.com/ for yourself to see.

The invite codes are here -one time use only- first five get the invites- so click and try your luck, machine learning on the cloud.

If you dont get an invite (or it is already used, just leave your email there and wait a couple of days to get approval)

  1. https://bigml.com/accounts/register/?code=E1FE7
  2. https://bigml.com/accounts/register/?code=09991
  3. https://bigml.com/accounts/register/?code=5367D
  4. https://bigml.com/accounts/register/?code=76EEF
  5. https://bigml.com/accounts/register/?code=742FD

Oracle R Updated!

Interesting message from https://blogs.oracle.com/R/ the latest R blog

 

_——–_

Oracle just released the latest update to Oracle R Enterprise, version 1.1. This release includes the Oracle R Distribution (based on open source R, version 2.13.2), an improved server installation, and much more.  The key new features include:

  • Extended Server Support: New support for Windows 32 and 64-bit server components, as well as continuing support for Linux 64-bit server components
  • Improved Installation: Linux 64-bit server installation now provides robust status updates and prerequisite checks
  • Performance Improvements: Improved performance for embedded R script execution calculations

In addition, the updated ROracle package, which is used with Oracle R Enterprise, now reads date data by conversion to character strings.

We encourage you download Oracle software for evaluation from the Oracle Technology Network. See these links for R-related software: Oracle R DistributionOracle R EnterpriseROracleOracle R Connector for Hadoop.  As always, we welcome comments and questions on the Oracle R Forum.

 

 

Oracle R Distribution 2-13.2 Update Available

Oracle has released an update to the Oracle R Distribution, an Oracle-supported distribution of open source R. Oracle R Distribution 2-13.2 now contains the ability to dynamically link the following libraries on both Windows and Linux:

  • The Intel Math Kernel Library (MKL) on Intel chips
  • The AMD Core Math Library (ACML) on AMD chips

 

To take advantage of the performance enhancements provided by Intel MKL or AMD ACML in Oracle R Distribution, simply add the MKL or ACML shared library directory to the LD_LIBRARY_PATH system environment variable. This automatically enables MKL or ACML to make use of all available processors, vastly speeding up linear algebra computations and eliminating the need to recompile R.  Even on a single core, the optimized algorithms in the Intel MKL libraries are faster than using R’s standard BLAS library.

Open-source R is linked to NetLib’s BLAS libraries, but they are not multi-threaded and only use one core. While R’s internal BLAS are efficient for most computations, it’s possible to recompile R to link to a different, multi-threaded BLAS library to improve performance on eligible calculations. Compiling and linking to R yourself can be involved, but for many, the significantly improved calculation speed justifies the effort. Oracle R Distribution notably simplifies the process of using external math libraries by enabling R to auto-load MKL orACML. For R commands that don’t link to BLAS code, taking advantage of database parallelism usingembedded R execution in Oracle R Enterprise is the route to improved performance.

For more information about rebuilding R with different BLAS libraries, see the linear algebra section in the R Installation and Administration manual. As always, the Oracle R Distribution is available as a free download to anyone. Questions and comments are welcome on the Oracle R Forum.

Teradata Analytics

A recent announcement showing Teradata partnering with KXEN and Revolution Analytics for Teradata Analytics.

http://www.teradata.com/News-Releases/2012/Teradata-Expands-Integrated-Analytics-Portfolio/

The Latest in Open Source Emerging Software Technologies
Teradata provides customers with two additional open source technologies – “R” technology from Revolution Analytics for analytics and GeoServer technology for spatial data offered by the OpenGeo organization – both of which are able to leverage the power of Teradata in-database processing for faster, smarter answers to business questions.

In addition to the existing world-class analytic partners, Teradata supports the use of the evolving “R” technology, an open source language for statistical computing and graphics. “R” technology is gaining popularity with data scientists who are exploiting its new and innovative capabilities, which are not readily available. The enhanced “R add-on for Teradata” has a 50 percent performance improvement, it is easier to use, and its capabilities support large data analytics. Users can quickly profile, explore, and analyze larger quantities of data directly in the Teradata Database to deliver faster answers by leveraging embedded analytics.

Teradata has partnered with Revolution Analytics, the leading commercial provider of “R” technology, because of customer interest in high-performing R applications that deliver superior performance for large-scale data. “Our innovative customers understand that big data analytics takes a smart approach to the entire infrastructure and we will enable them to differentiate their business in a cost-effective way,” said David Rich, chief executive officer, Revolution Analytics. “We are excited to partner with Teradata, because we see great affinity between Teradata and Revolution Analytics – we embrace parallel computing and the high performance offered by multi-core and multi-processor hardware.”

and

The Teradata Data Lab empowers business users and leading analytic partners to start building new analytics in less than five minutes, as compared to waiting several weeks for the IT department’s assistance.

“The Data Lab within the Teradata database provides the perfect foundation to enable self-service predictive analytics with KXEN InfiniteInsight,” said John Ball, chief executive officer, KXEN. “Teradata technologies, combined with KXEN’s automated modeling capabilities and in-database scoring, put the power of predictive analytics and data mining directly into the hands of business users. This powerful combination helps our joint customers accelerate insight by delivering top-quality models in orders of magnitude faster than traditional approaches.”

Read more at

http://www.sacbee.com/2012/03/06/4315500/teradata-expands-integrated-analytics.html

Oracle launches its version of R #rstats

From-

http://www.oracle.com/us/corporate/press/1515738

Integrates R Statistical Programming Language into Oracle Database 11g

News Facts

Oracle today announced the availability of Oracle Advanced Analytics, a new option for Oracle Database 11g that bundles Oracle R Enterprise together with Oracle Data Mining.
Oracle R Enterprise delivers enterprise class performance for users of the R statistical programming language, increasing the scale of data that can be analyzed by orders of magnitude using Oracle Database 11g.
R has attracted over two million users since its introduction in 1995, and Oracle R Enterprise dramatically advances capability for R users. Their existing R development skills, tools, and scripts can now also run transparently, and scale against data stored in Oracle Database 11g.
Customer testing of Oracle R Enterprise for Big Data analytics on Oracle Exadata has shown up to 100x increase in performance in comparison to their current environment.
Oracle Data Mining, now part of Oracle Advanced Analytics, helps enable customers to easily build and deploy predictive analytic applications that help deliver new insights into business performance.
Oracle Advanced Analytics, in conjunction with Oracle Big Data ApplianceOracle Exadata Database Machine and Oracle Exalytics In-Memory Machine, delivers the industry’s most integrated and comprehensive platform for Big Data analytics.

Comprehensive In-Database Platform for Advanced Analytics

Oracle Advanced Analytics brings analytic algorithms to data stored in Oracle Database 11g and Oracle Exadata as opposed to the traditional approach of extracting data to laptops or specialized servers.
With Oracle Advanced Analytics, customers have a comprehensive platform for real-time analytic applications that deliver insight into key business subjects such as churn prediction, product recommendations, and fraud alerting.
By providing direct and controlled access to data stored in Oracle Database 11g, customers can accelerate data analyst productivity while maintaining data security throughout the enterprise.
Powered by decades of Oracle Database innovation, Oracle R Enterprise helps enable analysts to run a variety of sophisticated numerical techniques on billion row data sets in a matter of seconds making iterative, speed of thought, and high-quality numerical analysis on Big Data practical.
Oracle R Enterprise drastically reduces the time to deploy models by eliminating the need to translate the models to other languages before they can be deployed in production.
Oracle R Enterprise integrates the extensive set of Oracle Database data mining algorithms, analytics, and access to Oracle OLAP cubes into the R language for transparent use by R users.
Oracle Data Mining provides an extensive set of in-database data mining algorithms that solve a wide range of business problems. These predictive models can be deployed in Oracle Database 11g and use Oracle Exadata Smart Scan to rapidly score huge volumes of data.
The tight integration between R, Oracle Database 11g, and Hadoop enables R users to write one R script that can run in three different environments: a laptop running open source R, Hadoop running with Oracle Big Data Connectors, and Oracle Database 11g.
Oracle provides single vendor support for the entire Big Data platform spanning the hardware stack, operating system, open source R, Oracle R Enterprise and Oracle Database 11g.
To enable easy enterprise-wide Big Data analysis, results from Oracle Advanced Analytics can be viewed from Oracle Business Intelligence Foundation Suite and Oracle Exalytics In-Memory Machine.

Supporting Quotes

“Oracle is committed to meeting the challenges of Big Data analytics. By building upon the analytical depth of Oracle SQL, Oracle Data Mining and the R environment, Oracle is delivering a scalable and secure Big Data platform to help our customers solve the toughest analytics problems,” said Andrew Mendelsohn, senior vice president, Oracle Server Technologies.
“We work with leading edge customers who rely on us to deliver better BI from their Oracle Databases. The new Oracle R Enterprise functionality allows us to perform deep analytics on Big Data stored in Oracle Databases. By leveraging R and its library of open source contributed CRAN packages combined with the power and scalability of Oracle Database 11g, we can now do that,” said Mark Rittman, co-founder, Rittman Mead.
Oracle Advanced Analytics — an option to Oracle Database 11g Enterprise Edition – extends the database into a comprehensive advanced analytics platform through two major components: Oracle R Enterprise and Oracle Data Mining. With Oracle Advanced Analytics, customers have a comprehensive platform for real-time analytic applications that deliver insight into key business subjects such as churn prediction, product recommendations, and fraud alerting.

Oracle R Enterprise tightly integrates the open source R programming language with the database to further extend the database with Rs library of statistical functionality, and pushes down computations to the database. Oracle R Enterprise dramatically advances the capability for R users, and allows them to use their existing R development skills and tools, and scripts can now also run transparently and scale against data stored in Oracle Database 11g.

Oracle Data Mining provides powerful data mining algorithms that run as native SQL functions for in-database model building and model deployment. It can be accessed through the SQL Developer extension Oracle Data Miner to build, evaluate, share and deploy predictive analytics methodologies. At the same time the high-performance Oracle-specific data mining algorithms are accessible from R.

BENEFITS

  • Scalability—Allows customers to easily scale analytics as data volume increases by bringing the algorithms to where the data resides – in the database
  • Performance—With analytical operations performed in the database, R users can take advantage of the extreme performance of Oracle Exadata
  • Security—Provides data analysts with direct but controlled access to data in Oracle Database 11g, accelerating data analyst productivity while maintaining data security
  • Save Time and Money—Lowers overall TCO for data analysis by eliminating data movement and shortening the time it takes to transform “raw data” into “actionable information”
Oracle R Hadoop Connector Gives R users high performance native access to Hadoop Distributed File System (HDFS) and MapReduce programming framework.
This is a  R package
From the datasheet at

New Plotters in Rapid Miner 5.2

I almost missed this because of my vacation and traveling

Rapid Miner has a tonne of new stuff (Statuary Ethics Declaration- Rapid Miner has been an advertising partner for Decisionstats – see the right margin)

see

http://rapid-i.com/component/option,com_myblog/Itemid,172/lang,en/

Great New Graphical Plotters

and some flashy work

and a great series of educational lectures

A Simple Explanation of Decision Tree Modeling based on Entropies

Link: http://www.simafore.com/blog/bid/94454/A-simple-explanation-of-how-entropy-fuels-a-decision-tree-model

Description of some of the basics of decision trees. Simple and hardly any math, I like the plots explaining the basic idea of the entropy as splitting criterion (although we actually calculate gain ratio differently than explained…)

Logistic Regression for Business Analytics using RapidMiner

Link: http://www.simafore.com/blog/bid/57924/Logistic-regression-for-business-analytics-using-RapidMiner-Part-2

Same as above, but this time for modeling with logistic regression.
Easy to read and covering all basic ideas together with some examples. If you are not familiar with the topic yet, part 1 (see below) might help.

Part 1 (Basics): http://www.simafore.com/blog/bid/57801/Logistic-regression-for-business-analytics-using-RapidMiner-Part-1

Deploy Model: http://www.simafore.com/blog/bid/82024/How-to-deploy-a-logistic-regression-model-using-RapidMiner

Advanced Information: http://www.simafore.com/blog/bid/99443/Understand-3-critical-steps-in-developing-logistic-regression-models

and lastly a new research project for collaborative data mining

http://www.e-lico.eu/

e-LICO Architecture and Components

The goal of the e-LICO project is to build a virtual laboratory for interdisciplinary collaborative research in data mining and data-intensive sciences. The proposed e-lab will comprise three layers: the e-science and data mining layers will form a generic research environment that can be adapted to different scientific domains by customizing the application layer.

  1. Drag a data set into one of the slots. It will be automatically detected as training data, test data or apply data, depending on whether it has a label or not.
  2. Select a goal. The most frequent one is probably “Predictive Modelling”. All goals have comments, so you see what they can be used for.
  3. Select “Fetch plans” and wait a bit to get a list of processes that solve your problem. Once the planning completes, select one of the processes (you can see a preview at the right) and run it. Alternatively, select multiple (selecting none means selecting all) and evaluate them on your data in a batch.

The assistant strives to generate processes that are compatible with your data. To do so, it performs a lot of clever operations, e.g., it automatically replaces missing values if missing values exist and this is required by the learning algorithm or performs a normalization when using a distance-based learner.

You can install the extension directly by using the Rapid-I Marketplace instead of the old update server. Just go to the preferences and enter http://rapidupdate.de:8180/UpdateServer as the update URL

Of course Rapid Miner has been of the most professional open source analytics company and they have been doing it for a long time now. I am particularly impressed by the product map (see below) and the graphical user interface.

http://rapid-i.com/content/view/186/191/lang,en/

Product Map

Just click on the products in the overview below in order to get more information about Rapid-I products.

 

Rapid-I Product Overview