Workflows and MyExperiment.org

Here is a great website for sharing workflows – it is called MyExperiment.org and it can also include Work flows from many software.

myExperiment currently has 4742 members270 groups1842 workflows423 files and 173 packs

Could it also include workflow from Red-R from #rstats or Enterprise Miner

Continue reading “Workflows and MyExperiment.org”

Machine Learning Contest

New Contest at http://www.ecmlpkdd2011.org/dcOverview.php

 

 

Discovery Challenge Overview

Organization | Overview | Task and DatasetsTimeline

 

General description: tasks and dataset

VideoLectures.net is a free and open access multimedia repository of video lectures, mainly of research and educational character. The lectures are given by distinguished scholars and scientists at the most important and prominent events like conferences, summer schools, workshops and science promotional events from many fields of Science. The portal is aimed at promoting science, exchanging ideas and fostering knowledge sharing by providing high quality didactic contents not only to the scientific community but also to the general public. All lectures, accompanying documents, information and links are systematically selected and classified through the editorial process taking into account also users’ comments.

The ECML-PKDD 2011 Discovery Challenge is organized in order to improve the website’s current recommender system. The challenge consists of two main tasks and a “side-by” contest. The provided data is for both of the tasks, and it is up to the contestants how it will be used for learning (building up) a recommender.

Due to the nature of the problem, each of the tasks has its own merit: task 1 simulates new-user and new- item recommendation (cold-start mode), task 2 simulates clickstream based recommendation (normal mode). Continue reading “Machine Learning Contest”

Dataists shake up R community with a rocking contest

Flipboard
Image by Johan Larsson via Flickr

Newly created Dataists are creating waves on Hacker News and beyond with their innovative contest- A Recommendation Engine for R Packages.

Not only is the contest useful, it is likely to teach R Users some data hacking skills, as well as the basics of creating a GitHub Project.

Read more here-http://www.dataists.com/2010/10/using-data-tools-to-find-data-tools-the-yo-dawg-of-data-hacking/

For that reason, we’ve settled on the more manageable question, “which packages are most often installed by normal R users?”

This last question could potentially be answered in a variety of ways. Our current approach uses a convenience sample of installation data that we’ve collected from volunteers in the R community, who kindly agreed to send us a list of the packages they have on their systems. We’ve anonymized this data and compiled a set of metadata-based predictors that allow us to predict the installation probabilities quite well. We’re releasing all of our current work, including the data we have and all of the code we’ve used so far for our exploratory analyses. The contest itself will go live on Kaggle on Sunday and will end four months from Sunday on February 10, 2011. The rules, prizes and official data sets are all described below.

Rules and Prizes

To win the contest, you need to predict the probability that a user U has a package P installed on their system for every pair, (U, P). We’ll assess your performance using ROC methods, which will be evaluated against a held out test data set. The winning team will receive 3 UseR! books of their choosing. In order to win the contest, you’ll have to provide your analysis code to us by creating a fork of our GitHub repository. You’ll also be required to provide a written description of your approach. We’re asking for so much openness from the winning team because we want this contest to serve as a stepping stone for the R community. We’re also hoping that enterprising data hackers will extend the lessons learned through this contest to other programming languages.

Extract from-http://www.dataists.com/2010/10/using-data-tools-to-find-data-tools-the-yo-dawg-of-data-hacking/

Read the full article there