Opera Unite- the future of cloud computing browsers

The boys (and ladies) at opera have been busy writing code , while the rest of the coders on the cloud were issuing press releases, attending meetings or just sky diving from the cloud. Judging by the language of apps and extensions, it seems that the  engineers de Vikings et Slavs were busy coding while the Anglo Saxons were busy preparing for IPOs.

I really like the complete anonymity offered by Opera and especially Opera Unite

1) The Adblock option blocks all ads (same as other extensions)

2) The lovely Opera Unite has incredible apps for peer to peer sharing. You can create your own spotify, host your own chat application, transfer files, remote manage your computer. C’est magnifique!

Some really awesome apps on Opera Unite

All these apps can make your own desktop into a remotely managed website- so SOPA is irrelevant even if passed without any protest or non violent protests

(SOPA- an acronym for STOP OBAMA or STOP A (?) , since OBAMA is the one the internet really supports , and he is dependent on that goodwill for fundraising or A is the acronym of a legendary media myth of an imaginary web based organization (imaginary as in iota)

QUOTE

I think it would be a good idea.

 Mahatma Gandhiwhen asked what he thought of Western civilization

Some Ways Anonymous Could Disrupt the Internet if SOPA is passed

This is a piece of science fiction. I wrote while reading Isaac Assimov’s advice to writers in GOLD, while on a beach in Anjuna.

1) Identify senators, lobbyists, senior executives of companies advocating for SOPA. Go for selective targeting of these people than massive Denial of Service Attacks.

This could also include election fund raising websites in the United States.

2) Create hacking tools with simple interfaces to probe commonly known software errors, to enable wider audience including the Occupy Movement students to participate in hacking. thus making hacking more democratic. What are the top 25 errors as per  http://cwe.mitre.org/cwss/

http://www.decisionstats.com/top-25-most-dangerous-software-errors/ ?

 

Easy interface tools to check vulnerabilities would be the next generation to flooding tools like HOIC, LOIC – Massive DDOS atttacks make good press coverage but not so good technically

3) Disrupt digital payment mechanisms for selected targets (in step1) using tools developed in Step 2, and introduce random noise errors in payment transfers.

4) Help create a better secure internet by embedding Tor within Chromium with all tools for anonymity embedded for easy usage – a more secure peer to peer browser (like a mashup of Opera , tor and chromium).

or maybe embed bit torrents within a browser.

5) Disrupt media companies and cloud computing based companies like iTunes, Spotify or Google Music, just like virus, ant i viruses disrupted the desktop model of computing. After that offer solutions to the problems like companies of anti virus software did for decades.

6) Hacking websites is fine fun, but hacking internet databases and massively parallel data scrapers can help disrupt some of the status quo.

This applies to databases that offer data for sale, like credit bureaus etc. Making this kind of data public will eliminate data middlemen.

7) Use cross border, cross country regulatory arbitrage for better risk control of hacker attacks.

8) recruiting among universities using easy to use hacking tools to expand the pool of dedicated hacker armies.

9) using operations like those targeting child pornography to increase political acceptability of the hacker sub culture. Refrain from overtly negative and unimaginative bad Press Relations

10) If you cant convince  them to pass SOPA, confuse them 😉 Use bots for random clicks on ads to confuse internet commerce.

 

Does Facebook deserve a 100 billion Valuation

some  questions in my Mind as I struggle to bet my money and pension savings on Facebook IPO

1) Revenue Mix- What percentage of revenues for Facebook come from Banner ads versus gaming partners like Zynga. How dependent is Facebook on Gaming partners. (Zynga has Google as an investor). What mix of revenue is dependent on privacy regulation countries like Europe vs countries like USA.

2) Do 800 million users of Facebook mean 100 billion valuation ? Thats a valuation of $125 in customer life time in terms of NPV . Since ad revenue is itself a percentage of actual good and services sold- how much worth of goods and services do consumers have to buy per capita , to give $125 worth of ads to FB. Eg . companies spend 5% of product cost on Facebook ads, so does that mean each FB account will hope to buy 2500$ worth of Goods from the Internet and from Facebook (assuming they also buy from Amazon etc)

3) Corporate Governance- Unlike Google, Facebook has faced troubling questions of ethics from the day it has started. This includes charges of intellectual property theft, but also non transparent FB stock option pricing in secondary markets before IPO, private placement by Wall Street Bankers like GoldMan Saachs, major investments by Russian Internet media corporations. (read- http://money.cnn.com/2011/01/03/technology/facebook_goldman/index.htm)

4) Retention of key employees post IPO- Key Employees at Google are actually ex- Microsofties. Key FB staff are ex-Google people. Where will the key -FB people go when bored and rich after IPO.

5) Does the macro Economic Condition justify the premium and Private Equity multiple of Facebook?

Will FB be the next Google (in terms of investor retruns) or will it be like Groupon. I suspect the answer  is- it depends on market discounting these assumptions while factoring in sentiment (as well as unloading of stock from large number of FB stock holders on week1).

Baby You Are a Rich Man. but not 100 billion rich. yet. Maybe 80 billion isnt that bad.

Quantitative Modeling for Arbitrage Positions in Ad KeyWords Internet Marketing

Assume you treat an ad keyword as an equity stock. There are slight differences in the cost for advertising for that keyword across various locations (Zurich vs Delhi) and various channels (Facebook vs Google) . You get revenue if your website ranks naturally in organic search for the keyword, and you have to pay costs for getting traffic to your website for that keyword.
An arbitrage position is defined as a riskless profit when cost of keyword is less than revenue from keyword. We take examples of Adsense  and Adwords primarily.
There are primarily two types of economic curves on the foundation of which commerce of the  internet  resides-
1) Cost Curve- Cost of Advertising to drive traffic into the website  (Google Adwords, Twitter Ads, Facebook , LinkedIn ads)
2) Revenue Curve – Revenue from ads clicked by the incoming traffic on website (like Adsense, LinkAds, Banner Ads, Ad Sharing Programs , In Game Ads)
The cost and revenue curves are primarily dependent on two things
1) Type of KeyWord-Also subdependent on
a) Location of Prospective Customer, and
b) Net Present Value of Good and Service to be eventually purchased
For example , keyword for targeting sales of enterprise “business intelligence software” should ideally be costing say X times as much as keywords for “flower shop for birthdays” where X is the multiple of the expected payoffs from sales of business intelligence software divided by expected payoff from sales of flowers (say in Location, Daytona Beach ,Florida or Austin, Texas)
2) Traffic Volume – Also sub-dependent on Time Series and
a) Seasonality -Annual Shoppping Cycle
b) Cyclicality– Macro economic shifts in time series
The cost and revenue curves are not linear and ideally should be continuous in a definitive exponential or polynomial manner, but in actual reality they may have sharp inflections , due to location, time, as well as web traffic volume thresholds
Type of Keyword – For example ,keywords for targeting sales for Eminem Albums may shoot up in a non linear manner after the musician dies.
The third and not so publicly known component of both the cost and revenue curves is factoring in internet industry dynamics , including relative market share of internet advertising platforms, as well as percentage splits between content creator and ad providing platforms.
For example, based on internet advertising spend, people belive that the internet advertising is currently heading for a duo-poly with Google and Facebook are the top two players, while Microsoft/Skype/Yahoo and LinkedIn/Twitter offer niche options, but primarily depend on price setting from Google/Bing/Facebook.
It is difficut to quantify  the elasticity and efficiency of market curves as most literature and research on this is by in-house corporate teams , or advisors or mentors or consultants to the primary leaders in a kind of incesteous fraternal hold on public academic research on this.
It is recommended that-
1) a balance be found in the need for corporate secrecy to protest shareholder value /stakeholder value maximization versus the need for data liberation for innovation and grow the internet ad pie faster-
2) Cost and Revenue Curves between different keywords, time,location, service providers, be studied by quants for hedging inetrent ad inventory or /and choose arbitrage positions This kind of analysis is done for groups of stocks and commodities in the financial world, but as commerce grows on the internet this may need more specific and independent quants.
3) attention be made to how cost and revenue curves mature as per level of sophistication of underlying economy like Brazil, Russia, China, Korea, US, Sweden may be in different stages of internet ad market evolution.
For example-
A study in cost and revenue curves for certain keywords across domains across various ad providers across various locations from 2003-2008 can help academia and research (much more than top ten lists of popular terms like non quantitative reports) as well as ensure that current algorithmic wightings are not inadvertently given away.
Part 2- of this series will explore the ways to create third party re-sellers of keywords and measuring impacts of search and ad engine optimization based on keywords.

Analytics Conferences for 2012

NOTE: Early Bird registration for PAW and TAW San Francisco is January 20th – $400 lower than Onsite Price.

CONFERENCE: Predictive Analytics World – San Francisco
March 4-10, 2012 in San Francisco, CA
http://predictiveanalyticsworld.com/sanfrancisco/2012
Discount Code : AJBP12

CONFERENCE: Text Analytics World – San Francisco
March 6-7, 2012 in San Francisco, CA
http://textanalyticsworld.com/sanfrancisco/2012
Discount Code :AJBP12

VARIOUS ANALYTICS WORKSHOPS:
A plethora of 1-day workshops are held alongside PAW and TAW
For details see: http://pawcon.com/sanfrancisco/2012/analytics_workshops.php

SEMINAR: Predictive Analytics for Business, Marketing & Web
March 22-23, 2012 in New York City, NY
July 26-27, 2012 in São Paulo, Brazil
A concentrated training program lead by Eric Siegel.
http://businessprediction.com

CONFERENCE: Predictive Analytics World – Toronto
April 26-27, 2012 in Toronto, Ontario
http://predictiveanalyticsworld.com/toronto/2012
Discount Code :AJBP12

CONFERENCE: Predictive Analytics World – Chicago
June 25-26, 2012 in Chicago, IL
http://www.predictiveanalyticsworld.com/chicago/2012/
Discount Code :AJBP12

MORE ANALYTICS EVENTS:
PAW Düsseldorf: November 6-7, 2012 – http://www.predictiveanalyticsworld.de
PAW London: November 27-28, 2012 – http://www.pawcon.com
PAW Videos: Available on-demand – http://www.pawcon.com/video

%d bloggers like this: