#Rstats gets into Enterprise Cloud Software

Defense Agencies of the United States Departme...
Image via Wikipedia

Here is an excellent example of how websites should help rather than hinder new customers take a demo of the software without being overwhelmed by sweet talking marketing guys who dont know the difference between heteroskedasticity, probability, odds and likelihood.

It is made by Zementis (Dr Michael Zeller has been a frequent guest here) and Revolution Analytics is still the best shot in Enterprise software for #Rstats

Now if only Revo could get into the lucrative Department of Energy or Department of Defense business- they could change the world AND earn some more revenue than they have been doing. But seriously.

Check out http://deployr.revolutionanalytics.com/zementis/ and play with it. or better still mash it with some data viz and ROC curves.- or extend it with some APIS 😉

Dataists shake up R community with a rocking contest

Flipboard
Image by Johan Larsson via Flickr

Newly created Dataists are creating waves on Hacker News and beyond with their innovative contest- A Recommendation Engine for R Packages.

Not only is the contest useful, it is likely to teach R Users some data hacking skills, as well as the basics of creating a GitHub Project.

Read more here-http://www.dataists.com/2010/10/using-data-tools-to-find-data-tools-the-yo-dawg-of-data-hacking/

For that reason, we’ve settled on the more manageable question, “which packages are most often installed by normal R users?”

This last question could potentially be answered in a variety of ways. Our current approach uses a convenience sample of installation data that we’ve collected from volunteers in the R community, who kindly agreed to send us a list of the packages they have on their systems. We’ve anonymized this data and compiled a set of metadata-based predictors that allow us to predict the installation probabilities quite well. We’re releasing all of our current work, including the data we have and all of the code we’ve used so far for our exploratory analyses. The contest itself will go live on Kaggle on Sunday and will end four months from Sunday on February 10, 2011. The rules, prizes and official data sets are all described below.

Rules and Prizes

To win the contest, you need to predict the probability that a user U has a package P installed on their system for every pair, (U, P). We’ll assess your performance using ROC methods, which will be evaluated against a held out test data set. The winning team will receive 3 UseR! books of their choosing. In order to win the contest, you’ll have to provide your analysis code to us by creating a fork of our GitHub repository. You’ll also be required to provide a written description of your approach. We’re asking for so much openness from the winning team because we want this contest to serve as a stepping stone for the R community. We’re also hoping that enterprising data hackers will extend the lessons learned through this contest to other programming languages.

Extract from-http://www.dataists.com/2010/10/using-data-tools-to-find-data-tools-the-yo-dawg-of-data-hacking/

Read the full article there

%d bloggers like this: