Amazon Ec2 goes Red Hat

message from Amazing Amazon’s cloud team- this will also help for #rstats users given that revolution Analytics full versions on RHEL.

—————————————————-

on-demand instances of Amazon EC2 running Red Hat Enterprise Linux (RHEL) for as little as $0.145 per instance hour. The offering combines the cost-effectiveness, scalability and flexibility of running in Amazon EC2 with the proven reliability of Red Hat Enterprise Linux.

Highlights of the offering include:

  • Support is included through subscription to AWS Premium Support with back-line support by Red Hat
  • Ongoing maintenance, including security patches and bug fixes, via update repositories available in all Amazon EC2 regions
  • Amazon EC2 running RHEL currently supports RHEL 5.5, RHEL 5.6, RHEL 6.0 and RHEL 6.1 in both 32 bit and 64 bit formats, and is available in all Regions.
  • Customers who already own Red Hat licenses will continue to be able to use those licenses at no additional charge.
  • Like all services offered by AWS, Amazon EC2 running Red Hat Enterprise Linux offers a low-cost, pay-as-you-go model with no long-term commitments and no minimum fees.

For more information, please visit the Amazon EC2 Red Hat Enterprise Linux page.

which is

Amazon EC2 Running Red Hat Enterprise Linux

Amazon EC2 running Red Hat Enterprise Linux provides a dependable platform to deploy a broad range of applications. By running RHEL on EC2, you can leverage the cost effectiveness, scalability and flexibility of Amazon EC2, the proven reliability of Red Hat Enterprise Linux, and AWS premium support with back-line support from Red Hat.. Red Hat Enterprise Linux on EC2 is available in versions 5.5, 5.6, 6.0, and 6.1, both in 32-bit and 64-bit architectures.

Amazon EC2 running Red Hat Enterprise Linux provides seamless integration with existing Amazon EC2 features including Amazon Elastic Block Store (EBS), Amazon CloudWatch, Elastic-Load Balancing, and Elastic IPs. Red Hat Enterprise Linux instances are available in multiple Availability Zones in all Regions.

Sign Up

Pricing

Pay only for what you use with no long-term commitments and no minimum fee.

On-Demand Instances

On-Demand Instances let you pay for compute capacity by the hour with no long-term commitments.

Region:US – N. VirginiaUS – N. CaliforniaEU – IrelandAPAC – SingaporeAPAC – Tokyo
Standard Instances Red Hat Enterprise Linux
Small (Default) $0.145 per hour
Large $0.40 per hour
Extra Large $0.74 per hour
Micro Instances Red Hat Enterprise Linux
Micro $0.08 per hour
High-Memory Instances Red Hat Enterprise Linux
Extra Large $0.56 per hour
Double Extra Large $1.06 per hour
Quadruple Extra Large $2.10 per hour
High-CPU Instances Red Hat Enterprise Linux
Medium $0.23 per hour
Extra Large $0.78 per hour
Cluster Compute Instances Red Hat Enterprise Linux
Quadruple Extra Large $1.70 per hour
Cluster GPU Instances Red Hat Enterprise Linux
Quadruple Extra Large $2.20 per hour

Pricing is per instance-hour consumed for each instance type. Partial instance-hours consumed are billed as full hours.

↑ Top

and

Available Instance Types

Standard Instances

Instances of this family are well suited for most applications.

Small Instance – default*

1.7 GB memory
1 EC2 Compute Unit (1 virtual core with 1 EC2 Compute Unit)
160 GB instance storage
32-bit platform
I/O Performance: Moderate
API name: m1.small

Large Instance

7.5 GB memory
4 EC2 Compute Units (2 virtual cores with 2 EC2 Compute Units each)
850 GB instance storage
64-bit platform
I/O Performance: High
API name: m1.large

Extra Large Instance

15 GB memory
8 EC2 Compute Units (4 virtual cores with 2 EC2 Compute Units each)
1,690 GB instance storage
64-bit platform
I/O Performance: High
API name: m1.xlarge

Micro Instances

Instances of this family provide a small amount of consistent CPU resources and allow you to burst CPU capacity when additional cycles are available. They are well suited for lower throughput applications and web sites that consume significant compute cycles periodically.

Micro Instance

613 MB memory
Up to 2 EC2 Compute Units (for short periodic bursts)
EBS storage only
32-bit or 64-bit platform
I/O Performance: Low
API name: t1.micro

High-Memory Instances

Instances of this family offer large memory sizes for high throughput applications, including database and memory caching applications.

High-Memory Extra Large Instance

17.1 GB of memory
6.5 EC2 Compute Units (2 virtual cores with 3.25 EC2 Compute Units each)
420 GB of instance storage
64-bit platform
I/O Performance: Moderate
API name: m2.xlarge

High-Memory Double Extra Large Instance

34.2 GB of memory
13 EC2 Compute Units (4 virtual cores with 3.25 EC2 Compute Units each)
850 GB of instance storage
64-bit platform
I/O Performance: High
API name: m2.2xlarge

High-Memory Quadruple Extra Large Instance

68.4 GB of memory
26 EC2 Compute Units (8 virtual cores with 3.25 EC2 Compute Units each)
1690 GB of instance storage
64-bit platform
I/O Performance: High
API name: m2.4xlarge

High-CPU Instances

Instances of this family have proportionally more CPU resources than memory (RAM) and are well suited for compute-intensive applications.

High-CPU Medium Instance

1.7 GB of memory
5 EC2 Compute Units (2 virtual cores with 2.5 EC2 Compute Units each)
350 GB of instance storage
32-bit platform
I/O Performance: Moderate
API name: c1.medium

High-CPU Extra Large Instance

7 GB of memory
20 EC2 Compute Units (8 virtual cores with 2.5 EC2 Compute Units each)
1690 GB of instance storage
64-bit platform
I/O Performance: High
API name: c1.xlarge

Cluster Compute Instances

Instances of this family provide proportionally high CPU resources with increased network performance and are well suited for High Performance Compute (HPC) applications and other demanding network-bound applications. Learn more about use of this instance type for HPC applications.

Cluster Compute Quadruple Extra Large Instance

23 GB of memory
33.5 EC2 Compute Units (2 x Intel Xeon X5570, quad-core “Nehalem” architecture)
1690 GB of instance storage
64-bit platform
I/O Performance: Very High (10 Gigabit Ethernet)
API name: cc1.4xlarge

Cluster GPU Instances

Instances of this family provide general-purpose graphics processing units (GPUs) with proportionally high CPU and increased network performance for applications benefitting from highly parallelized processing, including HPC, rendering and media processing applications. While Cluster Compute Instances provide the ability to create clusters of instances connected by a low latency, high throughput network, Cluster GPU Instances provide an additional option for applications that can benefit from the efficiency gains of the parallel computing power of GPUs over what can be achieved with traditional processors. Learn more about use of this instance type for HPC applications.

Cluster GPU Quadruple Extra Large Instance

22 GB of memory
33.5 EC2 Compute Units (2 x Intel Xeon X5570, quad-core “Nehalem” architecture)
2 x NVIDIA Tesla “Fermi” M2050 GPUs
1690 GB of instance storage
64-bit platform
I/O Performance: Very High (10 Gigabit Ethernet)
API name: cg1.4xlarge

 


Getting Started

To get started using Red Hat Enterprise Linux on Amazon EC2, perform the following steps:

  • Open and log into the AWS Management Console
  • Click on Launch Instance from the EC2 Dashboard
  • Select the Red Hat Enterprise Linux AMI from the QuickStart tab
  • Specify additional details of your instance and click Launch
  • Additional details can be found on each AMI’s Catalog Entry page

The AWS Management Console is an easy tool to start and manage your instances. If you are looking for more details on launching an instance, a quick video tutorial on how to use Amazon EC2 with the AWS Management Console can be found here .
A full list of Red Hat Enterprise Linux AMIs can be found in the AWS AMI Catalog.

↑ Top


Support

All customers running Red Hat Enterprise Linux on EC2 will receive access to repository updates from Red Hat. Moreover, AWS Premium support customers can contact AWS to get access to a support structure from both Amazon and Red Hat.

↑ Top


Resources

↑ Top


About Red Hat

Red Hat, the world’s leading open source solutions provider, is headquartered in Raleigh, NC with over 50 satellite offices spanning the globe. Red Hat provides high-quality, low-cost technology with its operating system platform, Red Hat Enterprise Linux, together with applications, management and Services Oriented Architecture (SOA) solutions, including the JBoss Enterprise Middleware Suite. Red Hat also offers support, training and consulting services to its customers worldwide.

 

also from Revolution Analytics- in case you want to #rstats in the cloud and thus kill all that talk of RAM dependency, slow R than other softwares (just increase the RAM above in the instances to keep it simple)

,or Revolution not being open enough

http://www.revolutionanalytics.com/downloads/gpl-sources.php

GPL SOURCES

Revolution Analytics uses an Open-Core Licensing model. We provide open- source R bundled with proprietary modules from Revolution Analytics that provide additional functionality for our users. Open-source R is distributed under the GNU Public License (version 2), and we make our software available under a commercial license.

Revolution Analytics respects the importance of open source licenses and has contributed code to the open source R project and will continue to do so. We have carefully reviewed our compliance with GPLv2 and have worked with Mark Radcliffe of DLA Piper, the outside General Legal Counsel of the Open Source Initiative, to ensure that we fully comply with the obligations of the GPLv2.

For our Revolution R distribution, we may make some minor modifications to the R sources (the ChangeLog file lists all changes made). You can download these modified sources of open-source R under the terms of the GPLv2, using either the links below or those in the email sent to you when you download a specific version of Revolution R.

Download GPL Sources

Product Version Platform Modified R Sources
Revolution R Community 3.2 Windows R 2.10.1
Revolution R Community 3.2 MacOS R 2.10.1
Revolution R Enterprise 3.1.1 RHEL R 2.9.2
Revolution R Enterprise 4.0 Windows R 2.11.1
Revolution R Enterprise 4.0.1 RHEL R 2.11.1
Revolution R Enterprise 4.1.0 Windows R 2.11.1
Revolution R Enterprise 4.2 Windows R 2.11.1
Revolution R Enterprise 4.2 RHEL R 2.11.1
Revolution R Enterprise 4.3 Windows & RHEL R 2.12.2

 

 

 

Professors and Patches: For a Betterrrr R

Professors sometime throw out provocative statements to ensure intellectual debate. I have had almost 1500+ hits in less than 2 days ( and I am glad I am on wordpress.com , my old beloved server would have crashed))

The remarks from Ross Ihaka, covered before and also at Xian’s blog at

Note most of his remarks are techie- and only a single line refers to Revlution Analytics.

Other senior members of community (read- professors are silent, though brobably some thought may have been ignited behind scenes)

http://xianblog.wordpress.com/2010/09/06/insane/comment-page-4/#comments

Ross Ihaka Says:
September 12, 2010 at 1:23 pm

Since (something like) my name has been taken in vain here, let me
chip in.

I’ve been worried for some time that R isn’t going to provide the base
that we’re going to need for statistical computation in the
future. (It may well be that the future is already upon us.) There
are certainly efficiency problems (speed and memory use), but there
are more fundamental issues too. Some of these were inherited from S
and some are peculiar to R.

One of the worst problems is scoping. Consider the following little
gem.

f =
function() {
if (runif(1) > .5)
x = 10
x
}

The x being returned by this function is randomly local or global.
There are other examples where variables alternate between local and
non-local throughout the body of a function. No sensible language
would allow this. It’s ugly and it makes optimisation really
difficult. This isn’t the only problem, even weirder things happen
because of interactions between scoping and lazy evaluation.

In light of this, I’ve come to the conclusion that rather than
“fixing” R, it would be much more productive to simply start over and
build something better. I think the best you could hope for by fixing
the efficiency problems in R would be to boost performance by a small
multiple, or perhaps as much as an order of magnitude. This probably
isn’t enough to justify the effort (Luke Tierney has been working on R
compilation for over a decade now).

To try to get an idea of how much speedup is possible, a number of us
have been carrying out some experiments to see how much better we
could do with something new. Based on prototyping we’ve been doing at
Auckland, it looks like it should be straightforward to get two orders
of magnitude speedup over R, at least for those computations which are
currently bottle-necked. There are a couple of ways to make this
happen.

First, scalar computations in R are very slow. This in part because
the R interpreter is very slow, but also because there are a no scalar
types. By introducing scalars and using compilation it looks like its
possible to get a speedup by a factor of several hundred for scalar
computations. This is important because it means that many ghastly
uses of array operations and the apply functions could be replaced by
simple loops. The cost of these improvements is that scope
declarations become mandatory and (optional) type declarations are
necessary to help the compiler.

As a side-effect of compilation and the use of type-hinting it should
be possible to eliminate dispatch overhead for certain (sealed)
classes (scalars and arrays in particular). This won’t bring huge
benefits across the board, but it will mean that you won’t have to do
foreign language calls to get efficiency.

A second big problem is that computations on aggregates (data frames
in particular) run at glacial rates. This is entirely down to
unnecessary copying because of the call-by-value semantics.
Preserving call-by-value semantics while eliminating the extra copying
is hard. The best we can probably do is to take a conservative
approach. R already tries to avoid copying where it can, but fails in
an epic fashion. The alternative is to abandon call-by-value and move
to reference semantics. Again, prototyping indicates that several
hundredfold speedup is possible (for data frames in particular).

The changes in semantics mentioned above mean that the new language
will not be R. However, it won’t be all that far from R and it should
be easy to port R code to the new system, perhaps using some form of
automatic translation.

If we’re smart about building the new system, it should be possible to
make use of multi-cores and parallelism. Adding this to the mix might just
make it possible to get a three order-of-magnitude performance boost
with just a fraction of the memory that R uses. I think it’s something
really worth putting some effort into.

I also think one other change is necessary. The license will need to a
better job of protecting work donated to the commons than GPL2 seems
to have done. I’m not willing to have any more of my work purloined by
the likes of Revolution Analytics, so I’ll be looking for better
protection from the license (and being a lot more careful about who I
work with).

The discussion spilled over to Stack Overflow as well

http://stackoverflow.com/questions/3706990/is-r-that-bad-that-it-should-be-rewritten-from-scratch/3710667#3710667

n the past week I’ve been following a discussion where Ross Ihaka wrote (here ):

I’ve been worried for some time that R isn’t going to provide the base that we’re going to need for statistical computation in the future. (It may well be that the future is already upon us.) There are certainly efficiency problems (speed and memory use), but there are more fundamental issues too. Some of these were inherited from S and some are peculiar to R.

He then continued explaining. This discussion started from this post, and was then followed by commentsherehereherehereherehere and maybe some more places I don’t know of.

We all know the problem now.

R can be improved substantially in terms of speed.

For some solutions, here are the patches by Radford-

http://www.cs.toronto.edu/~radford/speed-patches-doc

patch-dollar

    Speeds up access to lists, pairlists, and environments using the
    $ operator.  The speedup comes mainly from avoiding the overhead of 
    calling DispatchOrEval if there are no complexities, from passing
    on the field to extract as a symbol, or a name, or both, as available,
    and then converting only as necessary, from simplifying and inlining
    the pstrmatch procedure, and from not translating string multiple
    times.  

    Relevant timing test script:  test-dollar.r 

    This test shows about a 40% decrease in the time needed to extract
    elements of lists and environments.

    Changes unrelated to speed improvement:

    A small error-reporting bug is fixed, illustrated by the following
    output with r52822:

    > options(warnPartialMatchDollar=TRUE)
    > pl <- pairlist(abc=1,def=2)
    > pl$ab
    [1] 1
    Warning message:
    In pl$ab : partial match of 'ab' to ''

    Some code is changed at the end of R_subset3_dflt because it seems 
    to be more correct, as discussed in code comments. 

patch-evalList

    Speeds up a large number of operations by avoiding allocation of
    an extra CONS cell in the procedures for evaluating argument lists.

    Relevant timing test scripts:  all of them, but will look at test-em.r 

    On test-em.r, the speedup from this patch is about 5%.

patch-fast-base

    Speeds up lookup of symbols defined in the base environment, by
    flagging symbols that have a base environment definition recorded
    in the global cache.  This allows the definition to be retrieved
    quickly without looking in the hash table.  

    Relevant timing test scripts:  all of them, but will look at test-em.r 

    On test-em.r, the speedup from this patch is about 3%.

    Issue:  This patch uses the "spare" bit for the flag.  This bit is
    misnamed, since it is already used elsewhere (for closures).  It is
    possible that one of the "gp" bits should be used instead.  The
    "gp" bits should really be divided up for faster access, and so that
    their present use is apparent in the code.

    In case this use of the "spare" bit proves unwise, the patch code is 
    conditional on FAST_BASE_CACHE_LOOKUP being defined at the start of
    envir.r.

patch-fast-spec

    Speeds up lookup of function symbols that begin with a character
    other than a letter or ".", by allowing fast bypass of non-global
    environments that do not contain (and have never contained) symbols 
    of this sort.  Since it is expected that only functions will be
    given names of this sort, the check is done only in findFun, though
    it could also be done in findVar.

    Relevant timing test scripts:  all of them, but will look at test-em.r 

    On test-em.r, the speedup from this patch is about 8%.    

    Issue:  This patch uses the "spare" bit to flag environments known
    to not have symbols starting with a special character.  See remarks
    on patch-fast-base.

    In case this use of the "spare" bit proves unwise, the patch code is 
    conditional on FAST_SPEC_BYPASS being defined at the start of envir.r.

patch-for

    Speeds up for loops by not allocating new space for the loop
    variable every iteration, unless necessary.  

    Relevant timing test script:  test-for.r

    This test shows a speedup of about 5%.  

    Change unrelated to speed improvement:

    Fixes what I consider to be a bug, in which the loop clobbers a
    global variable, as demonstrated by the following output with r52822:

    > i <- 99
    > f <- function () for (i in 1:3) { print(i); if (i==2) rm(i); }
    > f()
    [1] 1
    [1] 2
    [1] 3
    > print(i)
    [1] 3

patch-matprod

    Speeds up matrix products, including vector dot products.  The
    speed issue here is that the R code checks for any NAs, and 
    does the multiply in the matprod procedure (in array.c) if so,
    since BLAS isn't trusted with NAs.  If this check takes about
    as long as just doing the multiply in matprod, calling a BLAS
    routine makes no sense.  

    Relevant time test script:  test-matprod.r

    With no external BLAS, this patch speeds up long vector-vector 
    products by a factor of about six, matrix-vector products by a
    factor of about three, and some matrix-matrix products by a 
    factor of about two.

    Issue:  The matrix multiply code in matprod using an LDOUBLE
    (long double) variable to accumulate sums, for improved accuracy.  
    On a SPARC system I tested on, operations on long doubles are 
    vastly slower than on doubles, so that the patch produces a 
    large slowdown rather than an improvement.  This is also an issue 
    for the "sum" function, which also uses an LDOUBLE to accumulate
    the sum.  Perhaps an ordinarly double should be used in these
    places, or perhaps the configuration script should define LDOUBLE 
    as double on architectures where long doubles are extraordinarily 
    slow.

    Due to this issue, not defining MATPROD_CAN_BE_DONE_HERE at the
    start of array.c will disable this patch.

patch-parens

    Speeds up parentheses by making "(" a special operator whose
    argument is not evaluated, thereby bypassing the overhead of
    evalList.  Also slightly speeds up curly brackets by inlining
    a function that is stylistically better inline anyway.

    Relevant test script:  test-parens.r

    In the parens part of test-parens.r, the speedup is about 9%.

patch-protect

    Speeds up numerous operations by making PROTECT, UNPROTECT, etc.
    be mostly macros in the files in src/main.  This takes effect
    only for files that include Defn.h after defining the symbol
    USE_FAST_PROTECT_MACROS.  With these macros, code of the form
    v = PROTECT(...) must be replaced by PROTECT(v = ...).  

    Relevant timing test scripts:  all of them, but will look at test-em.r 

    On test-em.r, the speedup from this patch is about 9%.

patch-save-alloc

    Speeds up some binary and unary arithmetic operations by, when
    possible, using the space holding one of the operands to hold
    the result, rather than allocating new space.  Though primarily
    a speed improvement, for very long vectors avoiding this allocation 
    could avoid running out of space.

    Relevant test script:  test-complex-expr.r

    On this test, the speedup is about 5% for scalar operands and about
    8% for vector operands.

    Issues:  There are some tricky issues with attributes, but I think
    I got them right.  This patch relies on NAMED being set correctly 
    in the rest of the code.  In case it isn't, the patch can be disabled 
    by not defining AVOID_ALLOC_IF_POSSIBLE at the top of arithmetic.c.

patch-square

    Speeds up a^2 when a is a long vector by not checking for the
    special case of an exponent of 2 over and over again for every 
    vector element.

    Relevant test script:  test-square.r

    The time for squaring a long vector is reduced in this test by a
    factor of more than five.

patch-sum-prod

    Speeds up the "sum" and "prod" functions by not checking for NA
    when na.rm=FALSE, and other detailed code improvements.

    Relevant test script:  test-sum-prod.r

    For sum, the improvement is about a factor of 2.5 when na.rm=FALSE,
    and about 10% when na.rm=TRUE.

    Issue:  See the discussion of patch-matprod regarding LDOUBLE.
    There is no change regarding this issue due to this patch, however.

patch-transpose

    Speeds up the transpose operation (the "t" function) from detailed
    code improvements.

    Relevant test script:  test-transpose.r

    The improvement for 200x60 matrices is about a factor of two.
    There is little or no improvement for long row or column vectors.

patch-vec-arith

    Speeds up arithmetic on vectors of the same length, or when on
    vector is of length one.  This is done with detailed code improvements.

    Relevant test script:  test-vec-arith.r

    On long vectors, the +, -, and * operators are sped up by about     
    20% when operands are the same length or one operand is of length one.

    Rather mysteriously, when the operands are not length one or the
    same length, there is about a 20% increase in time required, though
    this may be due to some strange C optimizer peculiarity or some 
    strange cache effect, since the C code for this is the same as before,
    with negligible additional overhead getting to it.  Regardless, this 
    case is much less common than equal lengths or length one.

    There is little change for the / operator, which is much slower than
    +, -, or *.

patch-vec-subset

    Speeds up extraction of subsets of vectors or matrices (eg, v[10:20]
    or M[1:10,101:110]).  This is done with detailed code improvements.

    Relevant test script:  test-vec-subset.r

    There are lots of tests in this script.  The most dramatic improvement
    is for extracting many rows and columns of a large array, where the 
    improvement is by about a factor of four.  Extracting many rows from
    one column of a matrix is sped up by about 30%. 

    Changes unrelated to speed improvement:

    Fixes two latent bugs where the code incorrectly refers to NA_LOGICAL
    when NA_INTEGER is appropriate and where LOGICAL and INTEGER types
    are treated as interchangeable.  These cause no problems at the moment,
    but would if representations were changed.

patch-subscript

    (Formerly part of patch-vec-subset)  This patch also speeds up
    extraction, and also replacement, of subsets of vectors or
    matrices, but focuses on the creation of the indexes rather than
    the copy operations.  Often avoids a duplication (see below) and
    eliminates a second scan of the subscript vector for zero
    subscripts, folding it into a previous scan at no additional cost.

    Relevant test script:  test-vec-subset.r

    Speeds up some operations with scalar or short vector indexes by
    about 10%.  Speeds up subscripting with a longer vector of
    positive indexes by about 20%.

    Issues:  The current code duplicates a vector of indexes when it
    seems unnecessary.  Duplication is for two reasons:  to handle
    the situation where the index vector is itself being modified in
    a replace operation, and so that any attributes can be removed, which 
    is helpful only for string subscripts, given how the routine to handle 
    them returns information via an attribute.  Duplication for the
    second reasons can easily be avoided, so I avoided it.  The first
    reason for duplication is sometimes valid, but can usually be avoided
    by first only doing it if the subscript is to be used for replacement
    rather than extraction, and second only doing it if the NAMED field
    for the subscript isn't zero.

    I also removed two layers of procedure call overhead (passing seven
    arguments, so not trivial) that seemed to be doing nothing.  Probably 
    it used to do something, but no longer does, but if instead it is 
    preparation for some future use, then removing it might be a mistake.

Software problems are best solved by writing code or patches in my opinion rather than discussing endlessly
Some other solutions to a BETTERRRR R
1) Complete Code Design Review
2) Version 3 - Tuneup
3) Better Documentation
4) Suing Revolution Analytics for the code - Hand over da code pardner
%d bloggers like this: