Profits from Closed Customers

Closed Customers aren’t really closed; they stay on in your database.

Database marketing can help you win revenue even after a customer relationship is discontinued. This is illustrated by the following example – A prominent global financial services giant, with nearly 100 years of history, faced a unique problem while operating in India. While it had been one of the earliest entrants in the credit card industry in India, it had rapidly been losing market share to newer and nimbler more aggressive local competitors.

Indian customers have one of the lowest levels of debt worldwide due to cultural aversion to debt and lack of competition in the pre 1990 era. The credit cards receivables business in India is also a loss making operation as of 2006, because of rampant competition and discounting on annual fees and charges. Lending in India is complicated because the credit bureau CIBIL was only in nascent stages, and declared income and actual income of people varied due to the tax laws and ‘black money’ economy.

However the average receivables per card had been steadily increasing in India and it had potential to make huge profits once Indian customers became comfortable with rotating balance and paying finance charges. The credit card division also had a culture of conservative lending only to prime customers, with a good track record. On the other hand, the company’s personal loan business was making great strides in both revenue and profitability growth due to aggressive selling to both prime and sub prime customers. As a result of this the company had built up a database of 3 million customers, out of which nearly 2 million had paid off their loans.

To improve the profitability of the credit card division, and offer its customers a more value added portfolio of financial services, the company embarked on a data mining project of cross selling to its closed personal customers. After extensive tests and research based on selective tele-calling to its customer database, the company found out the following analytical findings-

1) Customers who had paid back their loans on time were the customers who were good credit customers. These customers had also increased their income since the time they had closed their personal loan.

2) People who had closed their personal loans were targeted for re churning by the person loans business. However after 6 months of closing their loans, if the customer did not take another personal loan, they were unlikely to ever take a personal loan. Thus if these customers were called again for personal loan, it would be unprofitable since the incremental expenses were not justified by incremental revenues.

3) People who bounced cheques but paid off their entire loan were bad credit risks, especially for a revolving line of credit as in for credit cards.

4) People who were called by the credit card division had better brand recall if they had an earlier relationship with personal loans division. Since they paid off their loans on time, their experiences with the company as a whole were very positive. This goodwill of the company’s brand helped to trigger higher response ratios (almost 20 % of such people took the credit card compared to only 5 % for the general population)

5) De to regulatory reasons both the credit card division and the personal loan division had to maintain an arm’s length distance. In order to do so, the credit card division decided on a transfer price of 600 rupees plus 1% of average receivables to the personal loan division. This helped track the profitability of the exercise better.

As a result of the exercise the company managed to sell an extra fifty thousand credit cards. The program was such a success that it was adopted world wide. The personal loan division earned tens of millions of rupees from its closed customer database, and the credit card division managed to increase its market share slightly.

Thus mining its own database of customers helped the company achieve the following-

a) Increase profitability
b) Improve brand recall and enhance the existing relationship
c) Cut down on marketing costs by targeting more responsive customers
d) Improve the life time value of revenues earned from each customer

This article  builds up an argument for using internal data at a customer level for decreasing marketing costs and enhancing brand recall.

11 Analytics Softwares

1) R

R is open source, is similar to S and you can find ample support groups online. The only down side is that R does not have a good GUI (yet ..). It does have a rudimentary data GUI


3) Minitab

  • 4) E Views

    5) For Bayesian Inference

    6) Matlab

    7) Jim LeSage’s econometrics toolbox

    8) Office 2007 and Excel 2007 ( 🙂

    Office 2007 and Excel 2007 now supports up to 1,048,576 rows. If you were going to make the upgrade anyhow, it might save you a few bucks over an expensive statistics package. The statistics plugin for Office 2007 is a lot better than previous versions as well. Runs almost as many analytics as SPSS.

    9) JMP



    5 Graphing Softwares for the Web

    Here is a list of softwares apart from Adobe Flash and Microsoft Silverlight

    1) PHP offers the ability to dynamically create Shockwave Flash files.
    In addition, you can try the tool named PHP/SWF Charts.

    2) Another library for PHP is Open Flash Chart
    An article illustrating how to use it is here

    3)  you want a nice lightweight charting facility for the web with a simple API, you could try the Google Charts API, which is free to use and incorporate into your own applications

    4)Crystal Xcelsius

    Industry leading interactive data visualization.

    Create interactive Excel dashboards, business presentations and visual calculators from ordinary spreadsheets – then integrate them into PowerPoint, Word, PDF and the Web.

    5) Some other softwares