KXEN Case Studies : Financial Sector

Here are the summaries of some excellent success stories that KXEN has achieved working with partners in the financial world over the years.

Fraud Modeling- Disbank (acquired by Fortis) Turkey

1. Dısbank increased the number of identified fraudulent applications by 200% from 7 to 21 per day.

2.More than 50 fraudsters using counterfeit cards at merchant locations or fraudulent applications have been arrested after April 2004 when the fraud modeling system was set.


A large Bank on the U.S. East Coast

1.Response Modeling

Previously it took the modeling group four weeks to build one model with several hundred variables, using traditional modeling tools. KXEN took one hour for the same problem and doubled the lift in the top decile because it included variables that had not been used for this business question before.

2.Data Quality

Building a Cross/Up-sell Model for a direct marketing campaign to high net worth customers, the modelers needed four weeks using 1500 variables. Again it took one hour with KXEN, which uncovered significant problems with some of the top predictive variables. Further investigation proved that these problems were created in the data merge of the mail file and response file, creating several “perfect” predictors. The model was re-run, removing these variables, and immediately put into production.

Le Crédit Lyonnais

1.Around 160 score models now built annually – compared to around 10 previously – for 130 direct marketing campaigns.
2.KXEN software has allowed LCL to drive up response rates, leading to more value-added services for customers.

Finansbank, Turkey

1.Within 4 months of starting the project to combat dormancy using KXEN’s solution, the bank had successfully reactivated half its previously dormant customers as per Kunter Kutluay, Finansbank Director of Marketing and Risk Analytics.

Bank Austria Creditanstalt , Austria

1.Some 4.5 terabytes of data are held in the bank’s operational systems, with a further 2 terabytes archived. Analytical models created in KXEN are automatically fed through the bank’s scoring engine in batches weekly
or monthly depending on the schema.

“But we are looking at a success rate of target customer deals in the area of three to five per cent with KXEN.
Before that, it was one per cent or less. ”
Werner Widhalm, Head of the Customer Knowledge Management Unit.

Barclays

1.Barclays’ Teradata warehouse holds information on some 14 million active customers, with data
on many different aspects of customer behaviour. Previously, analysts had to manually whittle down several thousand fields of data to a core of only a few hundred to fit the limitations of the modelling process. Now, all of the variables can be fed straight into the predictive model.

Summary– KXEN has achieved tremendous response in all aspects of data modelling in financial sector where time in building, deploying and analyzing model is much more crucial than many other sectors. I would be following this with other case studies on other KXEN successes across multiple domains.

Source – http://www.kxen.com/index.php?option=com_content&task=view&id=220&Itemid=786

Disclaimer- I am a social media consultant for KXEN.

%d bloggers like this: