1-click Random Decision Forests

The Official Blog of BigML.com

One of the pitfalls of machine learning is that creating a single predictive model has the potential to overfit your data. That is, the performance on your training data might be very good, but the model does not generalize well to new data. Ensemble learning of decision trees, also referred to as forests or simply ensembles,  is a tried-and-true technique for reducing the error of single machine-learned models. By learning multiple models over different subsamples of your data and taking a majority vote at prediction time, the risk of overfitting a single model to all of the data is mitigated. You can read more about this in our previous post.

Early this year, we showed how BigML ensembles outperform their solo counterparts and even beat other machine learning services. However, up until now creating ensembles with BigML has only been available via our API. We are excited to announce that ensembles are now available via our…

View original post 869 more words

Author: Ajay Ohri

http://about.me/ajayohri

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s