Revolution Analytics Webinar-
Featured Webinar
|
![]() |
![]() |
|
![]() |
David Champagne CTO, Revolution Analytics |
|
![]() |
Tuesday, December 20th | |
![]() |
11:00AM – 11:30AM Pacific Click here for the webinar time in your local time zone |
Traditional IT infrastructure is simply unable to meet
the demands of the new “Big Data Analytics” landscape. Many enterprises are turning to the “R” statistical programming language and Hadoop (both open source projects) as a potential solution. This webinar will introduce the statistical capabilities of R within the Hadoop ecosystem. We’ll cover:
- An introduction to new packages developed by Revolution Analytics to facilitate interaction with the data stores HDFS and HBase so that they can be leveraged from the R environment
- An overview of how to write Map Reduce jobs in R using Hadoop
- Special considerations that need to be made when working with R and Hadoop.
We’ll also provide additional resources that are available to people interested in integrating R and Hadoop.
Upcoming Webinars
|
Wed, Dec 14th 11:00AM – 11:30AM PT |
Revolution R Enterprise – 100% R and MoreR users already know why the R language is the lingua franca of statisticians today: because it’s the most powerful statistical language in the world. Revolution Analytics builds on the power of open source R, and adds performance, productivity and integration features to create Revolution R Enterprise. In this webinar, author and blogger David Smith will introduce the additional capabilities of Revolution R Enterprise. |
Archived Webinars-
Revolution Webinar: New Features in Revolution R Enterprise 5.0 (including RevoScaleR) to Support Scalable Data AnalysisRevolution R Enterprise 5.0 is Revolution Analytics’ scalable analytics platform. At its core is Revolution Analytics’ enhanced Distribution of R, the world’s most widely-used project for statistical computing. In this webinar, Dr. Ranney will discuss new features and show examples of the new functionality, which extend the platform’s usability, integration and scalability