Saving Dataframe as a table

  • ModelData2=ModelData.toPandas()  #CONVERTS SPARK DF TO PANDAS DF
  • table_model = spark.createDataFrame(ModelData2) # CREATES SPARK DF
  • table_model.write.saveAsTable(‘LIBRARYPATH.model_data’) #SAVES AS TABLE

AND

new_df = transformed_chrn2[[‘Var1’, ‘Var2’, ‘Var3’, ‘Var4′,’Var5’]]

table_df = spark.createDataFrame(new_df)

table_df.write.saveAsTable(‘directory_name.table_name’)

SOURCE

https://stackoverflow.com/questions/30664008/how-to-save-dataframe-directly-to-hive

https://docs.microsoft.com/en-us/azure/hdinsight/spark/apache-spark-connect-to-sql-database

https://docs.microsoft.com/en-us/azure/databricks/getting-started/spark/dataframes

https://stackoverflow.com/questions/53212396/pyspark-saveastable-how-to-insert-new-data-to-existing-table

bar-chart in python

In Seaborn a bar-chart can be created using the sns.countplot method and passing it the data

https://towardsdatascience.com/introduction-to-data-visualization-in-python-89a54c97fbed

https://seaborn.pydata.org/generated/seaborn.barplot.html

Split and Substring in Hive QL

Suppose you have a variable like AccountID

split(trim(AccountID),’-‘)[0]

trim- removes spaces

split using – , splits the string into multiple parts based on delimiter –

and [0] gives the first part of the split string ([1] will give the second part, etc .)

Creating Buckets in Pandas using Query

It is quite easy to create buckets based on one column using query. Note you can also use qcut

 

bucket1 =df.query(‘Column_1 >=0 and Column_1 <0.25’)

bucket2 =df.query(‘Column_1 >=0.25 and Column_1 <0.5’)

bucket3 =df.query(‘Column_1 >=0.5 and Column_1 <0.75’)

bucket4 =df.query(‘Column_1 >=0.75 and Column_1 <=1’)

Load Multipe CSV files in PySpark

spark= SparkSession.builder \
.master(“local”) \
.appName(“Data Exploration”) \
.getOrCreate()

#load data as Spark DataFrame
data2=spark.read.format(“csv”) \
.option(“header”,”true”) \
.option(“mode”,”DROPMALFORMED”) \
.load(‘/home/Desktop//input/*.csv’)