Interview James G Kobielus IBM Big Data

Here is an interview with  James G Kobielus, who is the Senior Program Director, Product Marketing, Big Data Analytics Solutions at IBM. Special thanks to Payal Patel Cudia of IBM’s communication team,for helping with the logistics for this.

Ajay -What are the specific parts of the IBM Platform that deal with the three layers of Big Data -variety, velocity and volume

James-Well first of all, let’s talk about the IBM Information Management portfolio. Our big data platform addresses the three layers of big data to varying degrees either together in a product , or two out of the three or even one of the three aspects. We don’t have separate products for the variety, velocity and volume separately.

Let us define these three layers-Volume refers to the hundreds of terabytes and petabytes of stored data inside organizations today. Velocity refers to the whole continuum from batch to real time continuous and streaming data.

Variety refers to multi-structure data from structured to unstructured files, managed and stored in a common platform analyzed through common tooling.

For Volume-IBM has a highly scalable Big Data platform. This includes Netezza and Infosphere groups of products, and Watson-like technologies that can support petabytes volume of data for analytics. But really the support of volume ranges across IBM’s Information Management portfolio both on the database side and the advanced analytics side.

For real time Velocity, we have real time data acquisition. We have a product called IBM Infosphere, part of our Big Data platform, that is specifically built for streaming real time data acquisition and delivery through complex event processing. We have a very rich range of offerings that help clients build a Hadoop environment that can scale.

Our Hadoop platform is the most real time capable of all in the industry. We are differentiated by our sheer breadth, sophistication and functional depth and tooling integrated in our Hadoop platform. We are differentiated by our streaming offering integrated into the Hadoop platform. We also offer a great range of modeling and analysis tools, pretty much more than any other offering in the Big Data space.

Attached- Jim’s slides from Hadoop World

Ajay- Any plans for Mahout for Hadoop

Jim- I cant speak about product plans. We have plans but I cant tell you anything more. We do have a feature in Big Insights called System ML, a library for machine learning.

Ajay- How integral are acquisitions for IBM in the Big Data space (Netezza,Cognos,SPSS etc). Is it true that everything that you have in Big Data is acquired or is the famous IBM R and D contributing here . (see a partial list of IBM acquisitions at at http://www.ibm.com/investor/strategy/acquisitions.wss )

Jim- We have developed a lot on our own. We have the deepest R and D of anybody in the industry in all things Big Data.

For example – Watson has Big Insights Hadoop at its core. Apache Hadoop is the heart and soul of Big Data (see http://www-01.ibm.com/software/data/infosphere/hadoop/ ). A great deal that makes Big Insights so differentiated is that not everything that has been built has been built by the Hadoop community.

We have built additions out of the necessity for security, modeling, monitoring, and governance capabilities into BigInsights to make it truly enterprise ready. That is one example of where we have leveraged open source and we have built our own tools and technologies and layered them on top of the open source code.

Yes of course we have done many strategic acquisitions over the last several years related to Big Data Management and we continue to do so. This quarter we have done 3 acquisitions with strong relevance to Big Data. One of them is Vivisimo (http://www-03.ibm.com/press/us/en/pressrelease/37491.wss ).

Vivisimo provides federated Big Data discovery, search and profiling capabilities to help you figure out what data is out there,what is relevance of that data to your data science project- to help you answer the question which data should you bring in your Hadoop Cluster.

 We also did Varicent , which is more performance management and we did TeaLeaf , which is a customer experience solution provider where customer experience management and optimization is one of the hot killer apps for Hadoop in the cloud. We have done great many acquisitions that have a clear relevance to Big Data.

Netezza already had a massively parallel analytics database product with an embedded library of models called Netezza Analytics, and in-database capabilties to massively parallelize Map Reduce and other analytics management functions inside the database. In many ways, Netezza provided capabilities similar to that IBM had provided for many years under the Smart Analytics Platform (http://www-01.ibm.com/software/data/infosphere/what-is-advanced-analytics/ ) .

There is a differential between Netezza and ISAS.

ISAS was built predominantly in-house over several years . If you go back a decade ago IBM acquired Ascential Software , a product portfolio that was the heart and soul of IBM InfoSphere Information Manager that is core to our big Data platform. In addition to Netezza, IBM bought SPSS two years back. We already had data mining tools and predictive modeling in the InfoSphere portfolio, but we realized we needed to have the best of breed, SPSS provided that and so IBM acquired them.

 Cognos– We had some BI reporting capabilities in the InfoSphere portfolio that we had built ourselves and also acquired for various degrees from prior acquisitions. But clearly Cognos was one of the best BI vendors , and we were lacking such a rich tool set in our product in visualization and cubing and so for that reason we acquired Cognos.

There is also Unica – which is a marketing campaign optimization which in many ways is a killer app for Hadoop. Projects like that are driving many enterprises.

Ajay- How would you rank order these acquisitions in terms of strategic importance rather than data of acquisition or price paid.

Jim-Think of Big Data as an ecosystem that has components that are fitted to particular functions for data analytics and data management. Is the database the core, or the modeling tool the core, or the governance tools the core, or is the hardware platform the core. Everything is critically important. We would love to hear from you what you think have been most important. Each acquisition has helped play a critical role to build the deepest and broadest solution offering in Big Data. We offer the hardware, software, professional services, the hosting service. I don’t think there is any validity to a rank order system.

Ajay-What are the initiatives regarding open source that Big Data group have done or are planning?

Jim- What we are doing now- We are very much involved with the Apache Hadoop community. We continue to evolve the open source code that everyone leverages.. We have built BigInsights on Apache Hadoop. We have the closest, most up to date in terms of version number to Apache Hadoop ( Hbase,HDFS, Pig etc) of all commercial distributions with our BigInsights 1.4 .

We have an R library integrated with BigInsights . We have a R library integrated with Netezza Analytics. There is support for R Models within the SPSS portfolio. We already have a fair amount of support for R across the portfolio.

Ajay- What are some of the concerns (privacy,security,regulation) that you think can dampen the promise of Big Data.

Jim- There are no showstoppers, there is really a strong momentum. Some of the concerns within the Hadoop space are immaturity of the technology, the immaturity of some of the commercial offerings out there that implement Hadoop, the lack of standardization for formal sense for Hadoop.

There is no Open Standards Body that declares, ratifies the latest version of Mahout, Map Reduce, HDFS etc. There is no industry consensus reference framework for layering these different sub projects. There are no open APIs. There are no certifications or interoperability standards or organizations to certify different vendors interoperability around a common API or framework.

The lack of standardization is troubling in this whole market. That creates risks for users because users are adopting multiple Hadoop products. There are lots of Hadoop deployments in the corporate world built around Apache Hadoop (purely open source). There may be no assurance that these multiple platforms will interoperate seamlessly. That’s a huge issue in terms of just magnifying the risk. And it increases the need for the end user to develop their own custom integrated code if they want to move data between platforms, or move map-reduce jobs between multiple distributions.

Also governance is a consideration. Right now Hadoop is used for high volume ETL on multi structured and unstructured data sources, or Hadoop is used for exploratory sand boxes for data scientists. These are important applications that are a majority of the Hadoop deployments . Some Hadoop deployments are stand alone unstructured data marts for specific applications like sentiment analysis like.

Hadoop is not yet ready for data warehousing. We don’t see a lot of Hadoop being used as an alternative to data warehouses for managing the single version of truth of system or record data. That day will come but there needs to be out there in the marketplace a broader range of data governance mechanisms , master data management, data profiling products that are mature that enterprises can use to make sure their data inside their Hadoop clusters is clean and is the single version of truth. That day has not arrived yet.

One of the great things about IBM’s acquisition of Vivisimo is that a piece of that overall governance picture is discovery and profiling for unstructured data , and that is done very well by Vivisimo for several years.

What we will see is vendors such as IBM will continue to evolve security features inside of our Hadoop platform. We will beef up our data governance capabilities for this new world of Hadoop as the core of Big Data, and we will continue to build up our ability to integrate multiple databases in our Hadoop platform so that customers can use data from a bit of Hadoop,some data from a bit of traditional relational data warehouse, maybe some noSQL technology for different roles within a very complex Big Data environment.

That latter hybrid deployment model is becoming standard across many enterprises for Big Data. A cause for concern is when your Big Data deployment has a bit of Hadoop, bit of noSQL, bit of EDW, bit of in-memory , there are no open standards or frameworks for putting it all together for a unified framework not just for interoperability but also for deployment.

There needs to be a virtualization or abstraction layer for unified access to all these different Big Data platforms by the users/developers writing the queries, by administrators so they can manage data and resources and jobs across all these disparate platforms in a seamless unified way with visual tooling. That grand scenario, the virtualization layer is not there yet in any standard way across the big data market. It will evolve, it may take 5-10 years to evolve but it will evolve.

So, that’s the concern that can dampen some of the enthusiasm for Big Data Analytics.

About-

You can read more about Jim at http://www.linkedin.com/pub/james-kobielus/6/ab2/8b0 or

follow him on Twitter at http://twitter.com/jameskobielus

You can read more about IBM Big Data at http://www-01.ibm.com/software/data/bigdata/

Anonymous grows up and matures…Anonanalytics.com

I liked the design, user interfaces and the conceptual ideas behind the latest Anonymous hactivist websites (much better than the shabby graphic design of Wikileaks, or Friends of Wikileaks, though I guess they have been busy what with Julian’s escapades and Syrian emails)

 

I disagree  (and let us agree to disagree some of the time)

with the complete lack of respect for Graphical User Interfaces for tools. If dDOS really took off due to LOIC, why not build a GUI for SQL Injection (or atleats the top 25 vulnerability testing as by this list http://www.sans.org/top25-software-errors/

Shouldnt Tor be embedded within the next generation of Loic.

Automated testing tools are used by companies like Adobe (and others)… so why not create simple GUI for the existing tools.., I may be completely offtrack here.. but I think hacker education has been a critical misstep[ that has undermined Western Democracies preparedness for Cyber tactics by hostile regimes)…. how to create the next generation of hackers by easy tutorials (see codeacademy and build appropriate modules)

-A slick website to be funded by Bitcoins (Money can buy everything including Mastercard and Visa, but Bitcoins are an innovative step towards an internet economy  currency)

-A collobrative wiki

http://wiki.echelon2.org/wiki/Main_Page

Seriously dude, why not make this a part of Wikipedia- (i know Jimmy Wales got shifty eyes, but can you trust some1 )

-Analytics for Anonymous (sighs! I should have thought about this earlier)

http://anonanalytics.com/ (can be used to play and bill both sides of corporate espionage and be cyber private investigators)

What We Do

We provide the public with investigative reports exposing corrupt companies. Our team includes analysts, forensic accountants, statisticians, computer experts, and lawyers from various jurisdictions and backgrounds. All information presented in our reports is acquired through legal channels, fact-checked, and vetted thoroughly before release. This is both for the protection of our associates as well as groups/individuals who rely on our work.

_and lastly creative content for Pinterest.com and Public Relations ( what next-? Tom Cruise to play  Julian Assange in the new Movie ?)

http://www.par-anoia.net/ />Potentially Alarming Research: Anonymous Intelligence AgencyInformation is and will be free. Expect it. ~ Anonymous

Links of interest

  • Latest Scientology Mails (Austria)
  • Full FBI call transcript
  • Arrest Tracker
  • HBGary Email Viewer
  • The Pirate Bay Proxy
  • We Are Anonymous – Book
  • To be announced…

 

Rapid Miner User Conference 2012

One of those cool conferences that is on my bucket list- this time in Hungary (That’s a nice place)

But I am especially interested in seeing how far Radoop has come along !

Disclaimer- Rapid Miner has been a Decisionstats.com sponsor  for many years. It is also a very cool software but I like the R Extension facility even more!

—————————————————————

and not very expensive too compared to other User Conferences in Europe!-

http://rcomm2012.org/index.php/registration/prices

Information about Registration

  • Early Bird registration until July 20th, 2012.
  • Normal registration from July 21st, 2012 until August 13th, 2012.
  • Latest registration from August 14th, 2012 until August 24th, 2012.
  • Students have to provide a valid Student ID during registration.
  • The Dinner is included in the All Days and in the Conference packages.
  • All prices below are net prices. Value added tax (VAT) has to be added if applicable.

Prices for Regular Visitors

Days and Event
Early Bird Rate
Normal Rate
Latest Registration
Tuesday

(Training / Development 1)

190 Euro 230 Euro 280 Euro
Wednesday + Thursday

(Conference)

290 Euro 350 Euro 420 Euro
Friday

(Training / Development 2 and Exam)

190 Euro 230 Euro 280 Euro
All Days

(Full Package)

610 Euro 740 Euro 900 Euro

Prices for Authors and Students

In case of students, please note that you will have to provide a valid student ID during registration.

Days and Event
Early Bird Rate
Normal Rate
Latest Registration
Tuesday

(Training / Development 1)

90 Euro 110 Euro 140 Euro
Wednesday + Thursday

(Conference)

140 Euro 170 Euro 210 Euro
Friday

(Training / Development 2 and Exam)

90 Euro 110 Euro 140 Euro
All Days

(Full Package)

290 Euro 350 Euro 450 Euro
Time
Slot
Tuesday
Training / Workshop 1
Wednesday
Conference 1
Thursday
Conference 2
Friday
Training / Workshop 2
09:00 – 10:30
Introductory Speech
Ingo Mierswa; Rapid-I 

Data Analysis

 

NeurophRM: Integration of the Neuroph framework into RapidMiner
Miloš Jovanović, Jelena Stojanović, Milan Vukićević, Vera Stojanović, Boris Delibašić (University of Belgrade)

To be announced (Invited Talk)
To be announced

 

Recommender Systems

 

Extending RapidMiner with Recommender Systems Algorithms
Matej Mihelčić, Nino Antulov-Fantulin, Matko Bošnjak, Tomislav Šmuc (Ruđer Bošković Institute)

Implementation of User Based Collaborative Filtering in RapidMiner
Sérgio Morais, Carlos Soares (Universidade do Porto)

Parallel Training / Workshop Session

Advanced Data Mining and Data Transformations

or

Development Workshop Part 2

10:30 – 12:30
Data Analysis

Nearest-Neighbor and Clustering based Anomaly Detection Algorithms for RapidMiner
Mennatallah Amer, Markus Goldstein (DFKI)

Customers’ LifeStyle Targeting on Big Data using Rapid Miner
Maksim Drobyshev (LifeStyle Marketing Ltd)

Robust GPGPU Plugin Development for RapidMiner
Andor Kovács, Zoltán Prekopcsák (Budapest University of Technology and Economics)

Extensions

Image Mining Extension – Year After
Radim Burget, Václav Uher, Jan Mašek (Brno University of Technology)

Incorporating R Plots into RapidMiner Reports
Peter Jeszenszky (University of Debrecen)

An Octave Extension for RapidMiner
Sylvain Marié (Schneider Electric)

12:30 – 13:30
Lunch
Lunch
Lunch
13:30 – 15:00
Parallel Training / Workshop Session

Basic Data Mining and Data Transformations

or

Development Workshop Part 1

Applications

Application of RapidMiner in Steel Industry Research and Development
Bengt-Henning Maas, Hakan Koc, Martin Bretschneider (Salzgitter Mannesmann Forschung)

A Comparison of Data-driven Models for Forecast River Flow
Milan Cisty, Juraj Bezak (Slovak University of Technology)

Portfolio Optimization Using Local Linear Regression Ensembles in Rapid Miner
Gábor Nagy, Tamás Henk, Gergő Barta (Budapest University of Technology and Economics)

Unstructured Data


Processing Data Streams with the RapidMiner Streams-Plugin
Christian Bockermann, Hendrik Blom (TU Dortmund)

Automated Creation of Corpuses for the Needs of Sentiment Analysis
Peter Koncz, Jan Paralic (Technical University of Kosice)

 

Demonstration

 

News from the Rapid-I Labs
Simon Fischer; Rapid-I

This short session demonstrates the latest developments from the Rapid-I lab and will let you how you can build powerful analysis processes and routines by using those RapidMiner tools.

Certification Exam
15:00 – 17:00
Book Presentation and Game Show

Data Mining for the Masses: A New Textbook on Data Mining for Everyone
Matthew North (Washington & Jefferson College)

Matthew North presents his new book “Data Mining for the Masses” introducing data mining to a broader audience and making use of RapidMiner for practical data mining problems.

 

Game Show
Did you miss last years’ game show “Who wants to be a data miner?”? Use RapidMiner for problems it was never created for and beat the time and other contestants!

User Support

Get some Coffee for free – Writing Operators with RapidMiner Beans
Christian Bockermann, Hendrik Blom (TU Dortmund)

Meta-Modeling Execution Times of RapidMiner operators
Matija Piškorec, Matko Bošnjak, Tomislav Šmuc (Ruđer Bošković Institute) 

19:00
Social Event (Conference Dinner)
Social Event (Visit of Bar District)

 

Training: Basic Data Mining and Data Transformations

This is a short introductory training course for users who are not yet familiar with RapidMiner or only have a few experiences with RapidMiner so far. The topics of this training session include

  • Basic Usage
    • User Interface
    • Creating and handling RapidMiner repositories
    • Starting a new RapidMiner project
    • Operators and processes
    • Loading data from flat files
    • Storing data, processes, and results
  • Predictive Models
    • Linear Regression
    • Naïve Bayes
    • Decision Trees
  • Basic Data Transformations
    • Changing names and roles
    • Handling missing values
    • Changing value types by discretization and dichotimization
    • Normalization and standardization
    • Filtering examples and attributes
  • Scoring and Model Evaluation
    • Applying models
    • Splitting data
    • Evaluation methods
    • Performance criteria
    • Visualizing Model Performance

 

Training: Advanced Data Mining and Data Transformations

This is a short introductory training course for users who already know some basic concepts of RapidMiner and data mining and have already used the software before, for example in the first training on Tuesday. The topics of this training session include

  • Advanced Data Handling
    • Sampling
    • Balancing data
    • Joins and Aggregations
    • Detection and removal of outliers
    • Dimensionality reduction
  • Control process execution
    • Remember process results
    • Recall process results
    • Loops
    • Using branches and conditions
    • Exception handling
    • Definition of macros
    • Usage of macros
    • Definition of log values
    • Clearing log tables
    • Transforming log tables to data

 

Development Workshop Part 1 and Part 2

Want to exchange ideas with the developers of RapidMiner? Or learn more tricks for developing own operators and extensions? During our development workshops on Tuesday and Friday, we will build small groups of developers each working on a small development project around RapidMiner. Beginners will get a comprehensive overview of the architecture of RapidMiner before making the first steps and learn how to write own operators. Advanced developers will form groups with our experienced developers, identify shortcomings of RapidMiner and develop a new extension which might be presented during the conference already. Unfinished work can be continued in the second workshop on Friday before results might be published on the Marketplace or can be taken home as a starting point for new custom operators.