Using Rapid Miner and R for Sports Analytics #rstats

Rapid Miner has been one of the oldest open source analytics software, long long before open source or even analytics was considered a fashion buzzword. The Rapid Miner software has been a pioneer in many areas (like establishing a marketplace for Rapid Miner Extensions) and the Rapid Miner -R extension was one of the most promising enablers of using R in an enterprise setting.
The following interview was taken with a manager of analytics for a sports organization. The sports organization considers analytics as a strategic differentiator , hence the name is confidential. No part of the interview has been edited or manipulated.

Ajay- Why did you choose Rapid Miner and R? What were the other software alternatives you considered and discarded?

Analyst- We considered most of the other major players in statistics/data mining or enterprise BI.  However, we found that the value proposition for an open source solution was too compelling to justify the premium pricing that the commercial solutions would have required.  The widespread adoption of R and the variety of packages and algorithms available for it, made it an easy choice.  We liked RapidMiner as a way to design structured, repeatable processes, and the ability to optimize learner parameters in a systematic way.  It also handled large data sets better than R on 32-bit Windows did.  The GUI, particularly when 5.0 was released, made it more usable than R for analysts who weren’t experienced programmers.

Ajay- What analytics do you do think Rapid Miner and R are best suited for?

 Analyst- We use RM+R mainly for sports analysis so far, rather than for more traditional business applications.  It has been quite suitable for that, and I can easily see how it would be used for other types of applications.

 Ajay- Any experiences as an enterprise customer? How was the installation process? How good is the enterprise level support?

Analyst- Rapid-I has been one of the most responsive tech companies I’ve dealt with, either in my current role or with previous employers.  They are small enough to be able to respond quickly to requests, and in more than one case, have fixed a problem, or added a small feature we needed within a matter of days.  In other cases, we have contracted with them to add larger pieces of specific functionality we needed at reasonable consulting rates.  Those features are added to the mainline product, and become fully supported through regular channels.  The longer consulting projects have typically had a turnaround of just a few weeks.

 Ajay- What challenges if any did you face in executing a pure open source analytics bundle ?

Analyst- As Rapid-I is a smaller company based in Europe, the availability of training and consulting in the USA isn’t as extensive as for the major enterprise software players, and the time zone differences sometimes slow down the communications cycle.  There were times where we were the first customer to attempt a specific integration point in our technical environment, and with no prior experiences to fall back on, we had to work with Rapid-I to figure out how to do it.  Compared to the what traditional software vendors provide, both R and RM tend to have sparse, terse, occasionally incomplete documentation.  The situation is getting better, but still lags behind what the traditional enterprise software vendors provide.

 Ajay- What are the things you can do in R ,and what are the things you prefer to do in Rapid Miner (comparison for technical synergies)

Analyst- Our experience has been that RM is superior to R at writing and maintaining structured processes, better at handling larger amounts of data, and more flexible at fine-tuning model parameters automatically.  The biggest limitation we’ve had with RM compared to R is that R has a larger library of user-contributed packages for additional data mining algorithms.  Sometimes we opted to use R because RM hadn’t yet implemented a specific algorithm.  The introduction the R extension has allowed us to combine the strengths of both tools in a very logical and productive way.

In particular, extending RapidMiner with R helped address RM’s weakness in the breadth of algorithms, because it brings the entire R ecosystem into RM (similar to how Rapid-I implemented much of the Weka library early on in RM’s development).  Further, because the R user community releases packages that implement new techniques faster than the enterprise vendors can, this helps turn a potential weakness into a potential strength.  However, R packages tend to be of varying quality, and are more prone to go stale due to lack of support/bug fixes.  This depends heavily on the package’s maintainer and its prevalence of use in the R community.  So when RapidMiner has a learner with a native implementation, it’s usually better to use it than the R equivalent.

SAS and Hadoop

Awesomely informative post on sascom magazine (whose editor I have I interviewed before here at http://www.decisionstats.com/interview-alison-bolen-sas-com/ – )

Great piece by Michael Ames ,SAS Data Integration Product Manager.

http://www.sas.com/news/sascom/hadoop-tips.html

 

Also see SAS’s big data thingys here at

http://www.sas.com/software/high-performance-analytics/in-memory-analytics/index.html

Solutions and Capabilities Using SAS® In-Memory Analytics

  • High-Performance Analytics – Get near-real-time insights with appliance-ready analytics software designed to tackle big data and complex problems.
  • High-Performance Risk – Faster, better risk management decisions based on the most up-to-date views of your overall risk exposure.
  • High-Performance Liquidity Risk Management – Take quick, decisive actions to secure adequate funding, especially in times of volatility.
  • High-Performance Stress Testing – Make faster, more precise decisions to protect the health of the firm.
  • Visual Analytics – Explore big data using in-memory capabilities to better understand all of your data, discover new patterns and publish reports to the Web and iPad®.

(Ajay- I liked the Visual Analytics piece especially for Big Data )

Note-

 

Possible Digital Disruptions by Cyber Actors in USA Electoral Cycle

Some possible electronic disruptions  that threaten to disrupt the electoral cycle in United States of America currently underway is-

1) Limited Denial of Service Attacks (like for 5-8 minutes) on fund raising websites, trying to fly under the radar of network administrators to deny the targeted  fundraising website for a small percentage of funds . Money remains critical to the world’s most expensive political market. Even a 5% dropdown in online fund-raising capacity can cripple a candidate.

2)  Limited Man of the Middle  Attacks on ground volunteers to disrupt ,intercept and manipulate communication flows. Basically cyber attacks at vulnerable ground volunteers in critical counties /battleground /swing states (like Florida)

3) Electro-Magnetic Disruptions of Electronic Voting Machines in critical counties /swing states (like Florida) to either disrupt, manipulate or create an impression that some manipulation has been done.

4) Use search engine flooding (for search engine de-optimization of rival candidates keywords), and social media flooding for disrupting the listening capabilities of sentiment analysis.

5) Selected leaks (including using digital means to create authetntic, fake or edited collateral) timed to embarrass rivals or influence voters , this can be geo-coded and mass deployed.

6) using Internet communications to selectively spam or influence independent or opinionated voters through emails, short messaging service , chat channels, social media.

7) Disrupt the Hillary for President 2016 campaign by Anonymous-Wikileak sympathetic hacktivists.