Using Rapid Miner and R for Sports Analytics #rstats

Rapid Miner has been one of the oldest open source analytics software, long long before open source or even analytics was considered a fashion buzzword. The Rapid Miner software has been a pioneer in many areas (like establishing a marketplace for Rapid Miner Extensions) and the Rapid Miner -R extension was one of the most promising enablers of using R in an enterprise setting.
The following interview was taken with a manager of analytics for a sports organization. The sports organization considers analytics as a strategic differentiator , hence the name is confidential. No part of the interview has been edited or manipulated.

Ajay- Why did you choose Rapid Miner and R? What were the other software alternatives you considered and discarded?

Analyst- We considered most of the other major players in statistics/data mining or enterprise BI.  However, we found that the value proposition for an open source solution was too compelling to justify the premium pricing that the commercial solutions would have required.  The widespread adoption of R and the variety of packages and algorithms available for it, made it an easy choice.  We liked RapidMiner as a way to design structured, repeatable processes, and the ability to optimize learner parameters in a systematic way.  It also handled large data sets better than R on 32-bit Windows did.  The GUI, particularly when 5.0 was released, made it more usable than R for analysts who weren’t experienced programmers.

Ajay- What analytics do you do think Rapid Miner and R are best suited for?

 Analyst- We use RM+R mainly for sports analysis so far, rather than for more traditional business applications.  It has been quite suitable for that, and I can easily see how it would be used for other types of applications.

 Ajay- Any experiences as an enterprise customer? How was the installation process? How good is the enterprise level support?

Analyst- Rapid-I has been one of the most responsive tech companies I’ve dealt with, either in my current role or with previous employers.  They are small enough to be able to respond quickly to requests, and in more than one case, have fixed a problem, or added a small feature we needed within a matter of days.  In other cases, we have contracted with them to add larger pieces of specific functionality we needed at reasonable consulting rates.  Those features are added to the mainline product, and become fully supported through regular channels.  The longer consulting projects have typically had a turnaround of just a few weeks.

 Ajay- What challenges if any did you face in executing a pure open source analytics bundle ?

Analyst- As Rapid-I is a smaller company based in Europe, the availability of training and consulting in the USA isn’t as extensive as for the major enterprise software players, and the time zone differences sometimes slow down the communications cycle.  There were times where we were the first customer to attempt a specific integration point in our technical environment, and with no prior experiences to fall back on, we had to work with Rapid-I to figure out how to do it.  Compared to the what traditional software vendors provide, both R and RM tend to have sparse, terse, occasionally incomplete documentation.  The situation is getting better, but still lags behind what the traditional enterprise software vendors provide.

 Ajay- What are the things you can do in R ,and what are the things you prefer to do in Rapid Miner (comparison for technical synergies)

Analyst- Our experience has been that RM is superior to R at writing and maintaining structured processes, better at handling larger amounts of data, and more flexible at fine-tuning model parameters automatically.  The biggest limitation we’ve had with RM compared to R is that R has a larger library of user-contributed packages for additional data mining algorithms.  Sometimes we opted to use R because RM hadn’t yet implemented a specific algorithm.  The introduction the R extension has allowed us to combine the strengths of both tools in a very logical and productive way.

In particular, extending RapidMiner with R helped address RM’s weakness in the breadth of algorithms, because it brings the entire R ecosystem into RM (similar to how Rapid-I implemented much of the Weka library early on in RM’s development).  Further, because the R user community releases packages that implement new techniques faster than the enterprise vendors can, this helps turn a potential weakness into a potential strength.  However, R packages tend to be of varying quality, and are more prone to go stale due to lack of support/bug fixes.  This depends heavily on the package’s maintainer and its prevalence of use in the R community.  So when RapidMiner has a learner with a native implementation, it’s usually better to use it than the R equivalent.

Interview Prof Benjamin Alamar , Sports Analytics

Here is an interview with Prof Benjamin Alamar, founding editor of the Journal of Quantitative Analysis in Sport, a professor of sports management at Menlo College and the Director of Basketball Analytics and Research for the Oklahoma City Thunder of the NBA.

Ajay – The movie Moneyball recently sparked out mainstream interest in analytics in sports.Describe the role of analytics in sports management

Benjamin- Analytics is impacting sports organizations on both the sport and business side.
On the Sport side, teams are using analytics, including advanced data management, predictive anlaytics, and information systems to gain a competitive edge. The use of analytics results in more accurate player valuations and projections, as well as determining effective strategies against specific opponents.
On the business side, teams are using the tools of analytics to increase revenue in a variety of ways including dynamic ticket pricing and optimizing of the placement of concession stands.
Ajay-  What are the ways analytics is used in specific sports that you have been part of?

Benjamin- A very typical first step for a team is to utilize the tools of predictive analytics to help inform their draft decisions.

Ajay- What are some of the tools, techniques and software that analytics in sports uses?
Benjamin- The tools of sports analytics do not differ much from the tools of business analytics. Regression analysis is fairly common as are other forms of data mining. In terms of software, R is a popular tool as is Excel and many of the other standard analysis tools.
Ajay- Describe your career journey and how you became involved in sports management. What are some of the tips you want to tell young students who wish to enter this field?

Benjamin- I got involved in sports through a company called Protrade Sports. Protrade initially was a fantasy sports company that was looking to develop a fantasy game based on advanced sports statistics and utilize a stock market concept instead of traditional drafting. I was hired due to my background in economics to develop the market aspect of the game.

There I met Roland Beech (who now works for the Mavericks) and Aaron Schatz (owner of and learned about the developing field of sports statistics. I then changed my research focus from economics to sports statistics and founded the Journal of Quantitative Analysis in Sports. Through the journal and my published research, I was able to establish a reputation of doing quality, useable work.

For students, I recommend developing very strong data management skills (sql and the like) and thinking carefully about what sort of questions a general manager or coach would care about. Being able to demonstrate analytic skills around actionable research will generally attract the attention of pro teams.


Benjamin Alamar, Professor of Sport Management, Menlo College

Benjamin Alamar

Professor Benjamin Alamar is the founding editor of the Journal of Quantitative Analysis in Sport, a professor of sports management at Menlo College and the Director of Basketball Analytics and Research for the Oklahoma City Thunder of the NBA. He has published academic research in football, basketball and baseball, has presented at numerous conferences on sports analytics. He is also a co-creator of ESPN’s Total Quarterback Rating and a regular contributor to the Wall Street Journal. He has consulted for teams in the NBA and NFL, provided statistical analysis for author Michael Lewis for his recent book The Blind Side, and worked with numerous startup companies in the field of sports analytics. Professor Alamar is also an award winning economist who has worked academically and professionally in intellectual property valuation, public finance and public health. He received his PhD in economics from the University of California at Santa Barbara in 2001.

Prof Alamar is a speaker at Predictive Analytics World, San Fransisco and is doing a workshop there


All level tracks Track 1: Sports Analytics
Case Study: NFL, MLB, & NBA
Competing & Winning with Sports Analytics

The field of sports analytics ties together the tools of data management, predictive modeling and information systems to provide sports organization a competitive advantage. The field is rapidly developing based on new and expanded data sources, greater recognition of the value, and past success of a variety of sports organizations. Teams in the NFL, MLB, NBA, as well as other organizations have found a competitive edge with the application of sports analytics. The future of sports analytics can be seen through drawing on these past successes and the developments of new tools.

You can know more about Prof Alamar at his blog or journal at His detailed background can be seen at

Search, Sports,Social Media,SlideShares, Scribd

An image of a house fly eye surface by using S...
Image via Wikipedia

Some presentations I really liked.

A tutorial on SEO and SEM-

Carole Ann Matignon deals with optimization and scheduling, rules in the…….NFL!



Carole, We are waiting for the sequel on  analytics on football and the beer game.

Social Media Screw-Ups

Social Media doesnt matter at all- Social Media matters a lot- Still undecided? Take a look

Slideshare is a great VISUAL interface on sharing content. I liked Google Docs embedding as well, but Matt Mullenberg and Matt Cutts seemed to have stopped talking. Mullenberg is going like Zuckenberg, not willing to align with Sergey Mikhaylovich Brin. or maybe they are afraid of Big Brother Brin. Google loves Java and Javascript (even when they are getting sued for it)- while Matt M  hates it- bad for RIA I guess.

Scribd also is a great way to share content- and probably is small enough for. to allow embedding

Thats the reason why I sometimes prefer Scribd for sharing my poetry to Slideshare and Google Docs. Also I like the enhanced analytics and the much easier and evolved interface for reading. Slideshare is much more successful than Scribd because it is open to sharing with everyone- scribd tries to get you to register …;)

(* Also see MIT’s beer game at which is ahem different from Duke’s beer games).