is back from a dDOS

  1. Servers were okay, it was the DNS server that got swamped.
  2. I am sorry for the downtime- hopefully you didnt even notice
  3. I have faced challenges like domain name hijacking, sql injection , malicious WP plugins and thats why shifted to a professional hosting. I stand by my vendors and their professional judgement, moving away would mean the hackers won.
  4. This was very clever to swamp the DNS provider- my compliments to the tech talent behind this.
  5. You would think that every webmaster would have a back up plan in case his site went dDOS, but surprisingly even corporate websites dont have a back up (under attack) plan


Latest R Journal

Including juicy stuff on using a cluster of Apple Machines for grid computing , seasonality forecasting (Yet Another Package For Time Series )

But I kind of liked Sumo too-

Sumo is a fully-functional web application template that exposes an authenticated user’s R session within java server pages.

Sumo: An Authenticating Web Application with an Embedded R Session by Timothy T. Bergsma and Michael S. Smith Abstract Sumo is a web application intended as a template for developers. It is distributed as a Java ‘war’ file that deploys automatically when placed in a Servlet container’s ‘webapps’
directory. If a user supplies proper credentials, Sumo creates a session-specific Secure Shell connection to the host and a user-specific R session over that connection. Developers may write dynamic server pages that make use of the persistent R session and user-specific file space.

and for Apple fanboys-

We created the xgrid package (Horton and Anoke, 2012) to provide a simple interface to this distributed computing system. The package facilitates use of an Apple Xgrid for distributed processing of a simulation with many independent repetitions, by simplifying job submission (or grid stuffing) and collation of results. It provides a relatively thin but useful layer between R and Apple’s ‘xgrid’ shell command, where the user constructs input scripts to be run remotely. A similar set of routines, optimized for parallel estimation of JAGS (just another Gibbs sampler) models is available within the runjags package (Denwood, 2010). However, with the exception of runjags, none of the previously mentioned packages support parallel computation over an Apple Xgrid.

Hmm I guess parallel computing enabled by Wifi on mobile phones would be awesome too ! So would be anything using iOS . See the rest of the R Journal at


The economics of software piracy

Software piracy exists because-

1) Lack of appropriate technological controls (like those on DVDs) or on Bit Torrents (an innovation on the centralized server like Napster) or on Streaming etc etc.

Technology to share content has evolved at a much higher pace than technology to restrict content from being shared or limited to purchasers.

2) Huge difference in purchasing power across the globe.

An Itunes song at 99 cents might be okay buy in USA, but in Asia it is very expensive. Maybe if content creators use Purchasing Power Parity to price their goods, it might make an indent.

3) State sponsored intellectual theft as another form of economic warfare- this has been going on since the West stole gunpowder and silk from the Chinese, and Intel decided to win back the IP rights to the microprocessor (from the Japanese client)

4) Lack of consensus in policy makers across the globe on who gets hurt from IP theft, but complete consensus across young people in the globe that they are doing the right thing by downloading stuff for free.

5) There is no such thing as a free lunch. Sometimes software (and movie and songs) piracy help create demand across ignored markets – I always think the NFL can be huge in India if they market it.Sometimes it forces artists to commit suicide because they give up on the life of starving musician.

Mostly piracy has helped break profits of intermediaries between the actual creator and actual consumer.

So how to solve software piracy , assuming it is something that can be solved-

I dont know, but I do care.

I give most of my writings as CC-by-SA and that includes my poems. People (friends and family) sometimes pay me not to sing.

Pirates have existed and will exist as long as civilized men romanticize the notion of piracy and bicker between themselves for narrow gains.

  1. Ephesians 4:28 Let the thief no longer steal, but rather let him labor, doing honest work with his own hands, so that he may have something to share with anyone in need.
  2. A clean confession, combined with a promise never to commit the sin again, when offered before one who has the right to receive it, is the purest type of repentance.-Gandhi
  3. If you steal, I will wash your mouth with soap- Anonymous Mother.
  4. You shall not steal- Moses
  5. Steal may refer to: Theft, the illegal taking of another person’s property without that person’s freely-given consent; The gaining of a stolen base in baseball;



Working with a large number of files for reading into R #rstats

Using the dir() and list.files() commands lists all the files in a particular directory. These can be interactively read by R, by referencing to specific parts of the list created by the above two commands. This is useful when you are working with a large number of files, that get generated or re-generated after specific time periods (like web server log files)

> getwd()
[1] “C:/Users/KUs/Documents”
> path=”C:/Users/KUs/Desktop/tester”
> dir(path)
[1] “tester.csv” “tester2.csv” “tester3.csv””tester4.csv”
> setwd(path)
> read.table(file=dir(path)[1],sep=”t”,header=T)
X1 X2 X3 X4
1 to be 2 B

> read.table(file=dir(path)[4],sep=”,”,header=T)
zoo bee doo bee.1 daa
1 12 32 43 34 qwerty

Revolution R Enterprise 6.0 launched!

Just got the email-more software is good news!

Revolution R Enterprise 6.0 for 32-bit and 64-bit Windows and 64-bit Red Hat Enterprise Linux (RHEL 5.x and RHEL 6.x) features an updated release of the RevoScaleR package that provides fast, scalable data management and data analysis: the same code scales from data frames to local, high-performance .xdf files to data distributed across a Windows HPC Server cluster or IBM Platform Computing LSF cluster.  RevoScaleR also allows distribution of the execution of essentially any R function across cores and nodes, delivering the results back to the user.

Detailed information on what’s new in 6.0 and known issues:

and from the manual-lots of function goodies for Big Data


  • IBM Platform LSF Cluster support [Linux only]. The new RevoScaleR function, RxLsfCluster, allows you to create a distributed compute context for the Platform LSF workload manager.
  •  Azure Burst support added for Microsoft HPC Server [Windows only]. The new RevoScaleR function, RxAzureBurst, allows you to create a distributed compute context to have computations performed in the cloud using Azure Burst
  • The rxExec function allows distributed execution of essentially any R function across cores and nodes, delivering the results back to the user.
  • functions RxLocalParallel and RxLocalSeq allow you to create compute context objects for local parallel and local sequential computation, respectively.
  • RxForeachDoPar allows you to create a compute context using the currently registered foreach parallel backend (doParallel, doSNOW, doMC, etc.). To execute rxExec calls, simply register the parallel backend as usual, then set your compute context as follows: rxSetComputeContext(RxForeachDoPar())
  • rxSetComputeContext and rxGetComputeContext simplify management of compute contexts.
  • rxGlm, provides a fast, scalable, distributable implementation of generalized linear models. This expands the list of full-featured high performance analytics functions already available: summary statistics (rxSummary), cubes and cross tabs (rxCube,rxCrossTabs), linear models (rxLinMod), covariance and correlation matrices (rxCovCor),
    binomial logistic regression (rxLogit), and k-means clustering (rxKmeans)example: a Tweedie family with 1 million observations and 78 estimated coefficients (categorical data)
    took 17 seconds with rxGlm compared with 377 seconds for glm on a quadcore laptop


    and easier working with R’s big brother SAS language


    RevoScaleR high-performance analysis functions will now conveniently work directly with a variety of external data sources (delimited and fixed format text files, SAS files, SPSS files, and ODBC data connections). New functions are provided to create data source objects to represent these data sources (RxTextData, RxOdbcData, RxSasData, and RxSpssData), which in turn can be specified for the ‘data’ argument for these RevoScaleR analysis functions: rxHistogramrxSummary, rxCube, rxCrossTabs, rxLinMod, rxCovCor, rxLogit, and rxGlm.


    you can analyze a SAS file directly as follows:

    # Create a SAS data source with information about variables and # rows to read in each chunk

    sasDataFile <- file.path(rxGetOption(“sampleDataDir”),”claims.sas7bdat”)
    sasDS <- RxSasData(sasDataFile, stringsAsFactors = TRUE,colClasses = c(RowNum = “integer”),rowsPerRead = 50)

    # Compute and draw a histogram directly from the SAS file
    rxHistogram( ~cost|type, data = sasDS)
    # Compute summary statistics
    rxSummary(~., data = sasDS)
    # Estimate a linear model
    linModObj <- rxLinMod(cost~age + car_age + type, data = sasDS)
    # Import a subset into a data frame for further inspection
    subData <- rxImport(inData = sasDS, rowSelection = cost > 400,
    varsToKeep = c(“cost”, “age”, “type”))


The installation instructions and instructions for getting started with Revolution R Enterprise & RevoDeployR for Windows:

Oracle R Updated!

Interesting message from the latest R blog



Oracle just released the latest update to Oracle R Enterprise, version 1.1. This release includes the Oracle R Distribution (based on open source R, version 2.13.2), an improved server installation, and much more.  The key new features include:

  • Extended Server Support: New support for Windows 32 and 64-bit server components, as well as continuing support for Linux 64-bit server components
  • Improved Installation: Linux 64-bit server installation now provides robust status updates and prerequisite checks
  • Performance Improvements: Improved performance for embedded R script execution calculations

In addition, the updated ROracle package, which is used with Oracle R Enterprise, now reads date data by conversion to character strings.

We encourage you download Oracle software for evaluation from the Oracle Technology Network. See these links for R-related software: Oracle R DistributionOracle R EnterpriseROracleOracle R Connector for Hadoop.  As always, we welcome comments and questions on the Oracle R Forum.



Oracle R Distribution 2-13.2 Update Available

Oracle has released an update to the Oracle R Distribution, an Oracle-supported distribution of open source R. Oracle R Distribution 2-13.2 now contains the ability to dynamically link the following libraries on both Windows and Linux:

  • The Intel Math Kernel Library (MKL) on Intel chips
  • The AMD Core Math Library (ACML) on AMD chips


To take advantage of the performance enhancements provided by Intel MKL or AMD ACML in Oracle R Distribution, simply add the MKL or ACML shared library directory to the LD_LIBRARY_PATH system environment variable. This automatically enables MKL or ACML to make use of all available processors, vastly speeding up linear algebra computations and eliminating the need to recompile R.  Even on a single core, the optimized algorithms in the Intel MKL libraries are faster than using R’s standard BLAS library.

Open-source R is linked to NetLib’s BLAS libraries, but they are not multi-threaded and only use one core. While R’s internal BLAS are efficient for most computations, it’s possible to recompile R to link to a different, multi-threaded BLAS library to improve performance on eligible calculations. Compiling and linking to R yourself can be involved, but for many, the significantly improved calculation speed justifies the effort. Oracle R Distribution notably simplifies the process of using external math libraries by enabling R to auto-load MKL orACML. For R commands that don’t link to BLAS code, taking advantage of database parallelism usingembedded R execution in Oracle R Enterprise is the route to improved performance.

For more information about rebuilding R with different BLAS libraries, see the linear algebra section in the R Installation and Administration manual. As always, the Oracle R Distribution is available as a free download to anyone. Questions and comments are welcome on the Oracle R Forum.

How to learn Hacking Part 2

Now that you have read the basics here at (please do read this before reading the below)


Here is a list of tutorials that you should study (in order of ease)

1) LEARN BASICS – enough to get you a job maybe if that’s all you wanted.


Lena’s Reverse Engineering Tutorial-“Use  for finding the Tutorial

Lena’s Reverse Engineering tutorial. It includes 36 parts of individual cracking techniques and will teach you the basics of protection bypassing

01. Olly + assembler + patching a basic reverseme
02. Keyfiling the reverseme + assembler
03. Basic nag removal + header problems
04. Basic + aesthetic patching
05. Comparing on changes in cond jumps, animate over/in, breakpoints
06. “The plain stupid patching method”, searching for textstrings
07. Intermediate level patching, Kanal in PEiD
08. Debugging with W32Dasm, RVA, VA and offset, using LordPE as a hexeditor
09. Explaining the Visual Basic concept, introduction to SmartCheck and configuration
10. Continued reversing techniques in VB, use of decompilers and a basic anti-anti-trick
11. Intermediate patching using Olly’s “pane window”
12. Guiding a program by multiple patching.
13. The use of API’s in software, avoiding doublechecking tricks
14. More difficult schemes and an introduction to inline patching
15. How to study behaviour in the code, continued inlining using a pointer
16. Reversing using resources
17. Insights and practice in basic (self)keygenning
18. Diversion code, encryption/decryption, selfmodifying code and polymorphism
19. Debugger detected and anti-anti-techniques
20. Packers and protectors : an introduction
21. Imports rebuilding
22. API Redirection
23. Stolen bytes
24. Patching at runtime using loaders from lena151 original
25. Continued patching at runtime & unpacking armadillo standard protection
26. Machine specific loaders, unpacking & debugging armadillo
27. tElock + advanced patching
28. Bypassing & killing server checks
29. Killing & inlining a more difficult server check
30. SFX, Run Trace & more advanced string searching
31. Delphi in Olly & DeDe
32. Author tricks, HIEW & approaches in inline patching
33. The FPU, integrity checks & loader versus patcher
34. Reversing techniques in packed software & a S&R loader for ASProtect
35. Inlining inside polymorphic code
36. Keygenning

If you want more free training – hang around this website

OWASP Cheat Sheet Series

Draft OWASP Cheat Sheets


Course overview

Module 1 – The x86 environment

  • System Architecture
  • Windows Memory Management
  • Registers
  • Introduction to Assembly
  • The stack

Module 2 – The exploit developer environment

  • Setting up the exploit developer lab
  • Using debuggers and debugger plugins to gather primitives

Module 3 – Saved Return Pointer Overwrite

  • Functions
  • Saved return pointer overwrites
  • Stack cookies

Module 4 – Abusing Structured Exception Handlers

  • Abusing exception handler overwrites
  • Bypassing Safeseh

Module 5 – Pointer smashing

  • Function pointers
  • Data/object pointers
  • vtable/virtual functions

Module 6 – Off-by-one and integer overflows

  • Off-by-one
  • Integer overflows

Module 7 – Limited buffers

  • Limited buffers, shellcode splitting

Module 8 – Reliability++ & reusability++

  • Finding and avoiding bad characters
  • Creative ways to deal with character set limitations

Module 9 – Fun with Unicode

  • Exploiting Unicode based overflows
  • Writing venetian alignment code
  • Creating and Using venetian shellcode

Module 10 – Heap Spraying Fundamentals

  • Heap Management and behaviour
  • Heap Spraying for Internet Explorer 6 and 7

Module 11 – Egg Hunters

  • Using and tweaking Egg hunters
  • Custom egghunters
  • Using Omelet egghunters
  • Egghunters in a WoW64 environment

Module 12 – Shellcoding

  • Building custom shellcode from scratch
  • Understanding existing shellcode
  • Writing portable shellcode
  • Bypassing Antivirus

Module 13 – Metasploit Exploit Modules

  • Writing exploits for the Metasploit Framework
  • Porting exploits to the Metasploit Framework

Module 14 – ASLR

  • Bypassing ASLR

Module 15 – W^X

  • Bypassing NX/DEP
  • Return Oriented Programming / Code Reuse (ROP) )

Module 16 – Advanced Heap Spraying

  • Heap Feng Shui & heaplib
  • Precise heap spraying in modern browsers (IE8 & IE9, Firefox 13)

Module 17 – Use After Free

  • Exploiting Use-After-Free conditions

Module 18 – Windows 8

  • Windows 8 Memory Protections and Bypass


the syllabus is here at



or The Noir  Hat Conferences-

or read this website


Yes it is possible



The Johns Hopkins University Information Security Institute (JHUISI) is the University’s focal point for research and education in information security, assurance and privacy.

Scholarship Information


The Information Security Institute is now accepting applications for the Department of Defense’s Information Assurance Scholarship Program (IASP).  This scholarship includes full tuition, a living stipend, books and health insurance. In return each student recipient must work for a DoD agency at a competitive salary for six months for every semester funded. The scholarship is open to American citizens only.


The flagship educational experience offered by Johns Hopkins University in the area of information security and assurance is represented by the Master of Science in Security Informatics degree.  Over thirty courses are available in support of this unique and innovative graduate program.


Disclaimer- I havent done any of these things- This is just a curated list from Quora  so I am open to feedback.

You use this at your own risk of conscience ,local legal jurisdictions and your own legal liability.