Running R and RStudio Server on Red Hat Linux RHEL #rstats

Installing R

(OR sudo rpm -ivh http://dl.fedoraproject.org/pub/epel/6/x86_64/epel-release-6-8.noarch.rpm )

THEN

  • sudo yum install R

THEN

  • sudo R

(and to paste in Linux Window- just use Shift + Insert)

To Install RStudio (from http://www.rstudio.com/ide/download/server)

32-bit

  •  sudo yum install --nogpgcheck rstudio-server-0.97.320-i686.rpm

OR 64-bit

  •  sudo yum install --nogpgcheck rstudio-server-0.97.320-x86_64.rpm

Then

  • sudo rstudio-server verify-installation

Changing Firewalls in your RHEL

-Change to Root

  • sudo bash 

-Change directory

  • cd etc/sysconfig

-Read Iptables ( or firewalls file)

  • vi iptables

( to quite vi , press escape, then colon :  then q )

-Change Iptables to open port 8787

  • /sbin/iptables -A INPUT -p tcp --dport 8787 -j ACCEPT

Add new user name (here newuser1)

  • sudo useradd newuser1

Change password in new user name

  • sudo passwd newuser1

Now just login to IPADDRESS:8787 with user name and password above

(credit- IBM SmartCloud Support ,http://www.youtube.com/watch?v=woVjq83gJkg&feature=player_embedded, Rstudio help, David Walker http://datamgmt.com/installing-r-and-rstudio-on-redhat-or-centos-linux/, www.google.com ,Michael Grieb)
 

 

Revolution Analytics and Pricing Analytics

Cost of 1 day of Revolution Analytics Training at http://www.revolutionanalytics.com/services/training/

 

1. Intro to R

Price:  Commercial: SGD$500.00
Academic:SGD$350.00

1 Singapore dollar = 0.8197 US dollars

10% Early Bird Discount Deadline: November 13, 2012 @ 12:00PM Pacific Time
Discount code: earlybird

2. (aptly titled Minimalistic Sufficient R…you think the ricing would be minimalistic.. but)

http://www.revolutionanalytics.com/services/training/public/minimalist-sufficient-r.php

Price: 

$750

$100 Early Bird Discount Deadline: November 16, 2012 @ 12:00PM Pacific Time
Discount code: earlybird

3.

Advanced R (Italian)

Price:  Commercial: €680.00
Academic: €480.00

1 euro = 1.2975 US dollars

4.

Big Data AnalyticS with RevoScaleR

Price:  $500 with 2 month Revolution R Enterprise workstation evaluation.

$700 with 1 year subscription of Revolution R enterprise workstation ($1500 value)

10% Early Bird Discount Deadline: October 30, 2012 @ 12:00PM Pacific Time
Discount code: early

5.

Revolution R Time Series Training

Price:  Commercial: S$1,200.00
Academic:S$750.00

10% Early Bird Discount Deadline: October 30, 2012 @ 12:00PM Pacific Time
Discount code: earlybird

so training costs differently different strokes for different folks I guess,

BUT me hearties.

Cost of 1 year of Revolution Enterprise= $1000

Thats a flat rate, so the Linux and Windows costs the same and so does the 32-bit and 64-bit

(see http://buy.revolutionanalytics.com/ )

( My comment- either Revo should give away the license for free to enterprises, rationalize training costs, seriously how can 2 days of training cost like a 1 year of license and the software is definitely quite good., or create a paid Amazon Ec 2 AMI for enterprises to rent the Revolution Analytics software (like SAP Hana ), or even on Windows Azure if they insist on hugging Microsoft, though I am clearly seeing various flavors of Linux beating Windows Server to a pulp in the Big Data market, though I am probably more optimistic on the Windows 8 on Surface but because of hardware not software/ Azure alternative to Amazon given Google’s delayed offering- I dont even know many many instance of Windows related HPC or HPA,  (/end_of_rant)

Annual Subscription
Includes software license and technical support
Price Quantity Total
Revolution R Enterprise Single-User Workstation (64-bit Windows) $1,000.00 $0.00
Revolution R Enterprise Single-User Workstation (32-bit Windows) $1,000.00 $0.00
Revolution R Enterprise Single-User Workstation (64-bit Red Hat 6 Enterprise Linux) $1,000.00 $0.00
Revolution R Enterprise Single-User Workstation (64-bit Red Hat 5 Enterprise Linux) $1,000.00 $0.00

 

Revolution R Enterprise 6.0 launched!

Just got the email-more software is good news!

Revolution R Enterprise 6.0 for 32-bit and 64-bit Windows and 64-bit Red Hat Enterprise Linux (RHEL 5.x and RHEL 6.x) features an updated release of the RevoScaleR package that provides fast, scalable data management and data analysis: the same code scales from data frames to local, high-performance .xdf files to data distributed across a Windows HPC Server cluster or IBM Platform Computing LSF cluster.  RevoScaleR also allows distribution of the execution of essentially any R function across cores and nodes, delivering the results back to the user.

Detailed information on what’s new in 6.0 and known issues:
http://www.revolutionanalytics.com/doc/README_RevoEnt_Windows_6.0.0.pdf

and from the manual-lots of function goodies for Big Data

 

  • IBM Platform LSF Cluster support [Linux only]. The new RevoScaleR function, RxLsfCluster, allows you to create a distributed compute context for the Platform LSF workload manager.
  •  Azure Burst support added for Microsoft HPC Server [Windows only]. The new RevoScaleR function, RxAzureBurst, allows you to create a distributed compute context to have computations performed in the cloud using Azure Burst
  • The rxExec function allows distributed execution of essentially any R function across cores and nodes, delivering the results back to the user.
  • functions RxLocalParallel and RxLocalSeq allow you to create compute context objects for local parallel and local sequential computation, respectively.
  • RxForeachDoPar allows you to create a compute context using the currently registered foreach parallel backend (doParallel, doSNOW, doMC, etc.). To execute rxExec calls, simply register the parallel backend as usual, then set your compute context as follows: rxSetComputeContext(RxForeachDoPar())
  • rxSetComputeContext and rxGetComputeContext simplify management of compute contexts.
  • rxGlm, provides a fast, scalable, distributable implementation of generalized linear models. This expands the list of full-featured high performance analytics functions already available: summary statistics (rxSummary), cubes and cross tabs (rxCube,rxCrossTabs), linear models (rxLinMod), covariance and correlation matrices (rxCovCor),
    binomial logistic regression (rxLogit), and k-means clustering (rxKmeans)example: a Tweedie family with 1 million observations and 78 estimated coefficients (categorical data)
    took 17 seconds with rxGlm compared with 377 seconds for glm on a quadcore laptop

     

    and easier working with R’s big brother SAS language

     

    RevoScaleR high-performance analysis functions will now conveniently work directly with a variety of external data sources (delimited and fixed format text files, SAS files, SPSS files, and ODBC data connections). New functions are provided to create data source objects to represent these data sources (RxTextData, RxOdbcData, RxSasData, and RxSpssData), which in turn can be specified for the ‘data’ argument for these RevoScaleR analysis functions: rxHistogramrxSummary, rxCube, rxCrossTabs, rxLinMod, rxCovCor, rxLogit, and rxGlm.


    example, 

    you can analyze a SAS file directly as follows:


    # Create a SAS data source with information about variables and # rows to read in each chunk

    sasDataFile <- file.path(rxGetOption(“sampleDataDir”),”claims.sas7bdat”)
    sasDS <- RxSasData(sasDataFile, stringsAsFactors = TRUE,colClasses = c(RowNum = “integer”),rowsPerRead = 50)

    # Compute and draw a histogram directly from the SAS file
    rxHistogram( ~cost|type, data = sasDS)
    # Compute summary statistics
    rxSummary(~., data = sasDS)
    # Estimate a linear model
    linModObj <- rxLinMod(cost~age + car_age + type, data = sasDS)
    summary(linModObj)
    # Import a subset into a data frame for further inspection
    subData <- rxImport(inData = sasDS, rowSelection = cost > 400,
    varsToKeep = c(“cost”, “age”, “type”))
    subData

 

The installation instructions and instructions for getting started with Revolution R Enterprise & RevoDeployR for Windows: http://www.revolutionanalytics.com/downloads/instructions/windows.php