Using Rapid Miner and R for Sports Analytics #rstats

Rapid Miner has been one of the oldest open source analytics software, long long before open source or even analytics was considered a fashion buzzword. The Rapid Miner software has been a pioneer in many areas (like establishing a marketplace for Rapid Miner Extensions) and the Rapid Miner -R extension was one of the most promising enablers of using R in an enterprise setting.
The following interview was taken with a manager of analytics for a sports organization. The sports organization considers analytics as a strategic differentiator , hence the name is confidential. No part of the interview has been edited or manipulated.

Ajay- Why did you choose Rapid Miner and R? What were the other software alternatives you considered and discarded?

Analyst- We considered most of the other major players in statistics/data mining or enterprise BI.  However, we found that the value proposition for an open source solution was too compelling to justify the premium pricing that the commercial solutions would have required.  The widespread adoption of R and the variety of packages and algorithms available for it, made it an easy choice.  We liked RapidMiner as a way to design structured, repeatable processes, and the ability to optimize learner parameters in a systematic way.  It also handled large data sets better than R on 32-bit Windows did.  The GUI, particularly when 5.0 was released, made it more usable than R for analysts who weren’t experienced programmers.

Ajay- What analytics do you do think Rapid Miner and R are best suited for?

 Analyst- We use RM+R mainly for sports analysis so far, rather than for more traditional business applications.  It has been quite suitable for that, and I can easily see how it would be used for other types of applications.

 Ajay- Any experiences as an enterprise customer? How was the installation process? How good is the enterprise level support?

Analyst- Rapid-I has been one of the most responsive tech companies I’ve dealt with, either in my current role or with previous employers.  They are small enough to be able to respond quickly to requests, and in more than one case, have fixed a problem, or added a small feature we needed within a matter of days.  In other cases, we have contracted with them to add larger pieces of specific functionality we needed at reasonable consulting rates.  Those features are added to the mainline product, and become fully supported through regular channels.  The longer consulting projects have typically had a turnaround of just a few weeks.

 Ajay- What challenges if any did you face in executing a pure open source analytics bundle ?

Analyst- As Rapid-I is a smaller company based in Europe, the availability of training and consulting in the USA isn’t as extensive as for the major enterprise software players, and the time zone differences sometimes slow down the communications cycle.  There were times where we were the first customer to attempt a specific integration point in our technical environment, and with no prior experiences to fall back on, we had to work with Rapid-I to figure out how to do it.  Compared to the what traditional software vendors provide, both R and RM tend to have sparse, terse, occasionally incomplete documentation.  The situation is getting better, but still lags behind what the traditional enterprise software vendors provide.

 Ajay- What are the things you can do in R ,and what are the things you prefer to do in Rapid Miner (comparison for technical synergies)

Analyst- Our experience has been that RM is superior to R at writing and maintaining structured processes, better at handling larger amounts of data, and more flexible at fine-tuning model parameters automatically.  The biggest limitation we’ve had with RM compared to R is that R has a larger library of user-contributed packages for additional data mining algorithms.  Sometimes we opted to use R because RM hadn’t yet implemented a specific algorithm.  The introduction the R extension has allowed us to combine the strengths of both tools in a very logical and productive way.

In particular, extending RapidMiner with R helped address RM’s weakness in the breadth of algorithms, because it brings the entire R ecosystem into RM (similar to how Rapid-I implemented much of the Weka library early on in RM’s development).  Further, because the R user community releases packages that implement new techniques faster than the enterprise vendors can, this helps turn a potential weakness into a potential strength.  However, R packages tend to be of varying quality, and are more prone to go stale due to lack of support/bug fixes.  This depends heavily on the package’s maintainer and its prevalence of use in the R community.  So when RapidMiner has a learner with a native implementation, it’s usually better to use it than the R equivalent.

Predictive Analytics Conferences-Four PAWs Coming – PAW Boston Super Early Ends Friday

  • Message from PAW Conferences

Friday, July 13th is your final opportunity to take advantage of the super early bird pricing for Predictive Analytics World Boston, Sept 30 – Oct 4.
INFO: www.pawcon.com/boston

AGENDA AT A GLANCE: www.pawcon.com/boston/2012/agenda_overview.php

Register now and realize savings of up to $600 over onsite registration:
www.pawcon.com/boston/register.php

– – – – – – – – – – – – – – –

All ANALYTICS EVENTS:

PAW Government: Sept 17-18, 2012 – www.pawgov.com
PAW Boston: Sept 30-Oct 4, 2012 – http://www.pawcon.com/boston
Text Analytics World Boston: Oct 3-4, 2012 – www.tawcon.com/boston
PAW Düsseldorf: Nov 6-7, 2012 – predictiveanalyticsworld.de
PAW London: Nov 27-28, 2012 – www.pawcon.com/london
PAW Videos: Available on-demand – www.pawcon.com/video

Machine Learning to Translate Code from different programming languages

Google Translate has been a pioneer in using machine learning for translating various languages (and so is the awesome Google Transliterate)

I wonder if they can expand it to programming languages and not just human languages.

 

Issues in converting  translating programming language code

1) Paths referred for stored objects

2) Object Names should remain the same and not translated

3) Multiple Functions have multiple uses , sometimes function translate is not straightforward

I think all these issues are doable, solveable and more importantly profitable.

 

I look forward to the day a iOS developer can convert his code to Android app code by simple upload and download.