Home » Posts tagged 'plugin'

Tag Archives: plugin

RCOMM 2012 goes live in August

An awesome conference by an awesome software Rapid Miner remains one of the leading enterprise grade open source software , that can help you do a lot of things including flow driven data modeling ,web mining ,web crawling etc which even other software cant.

Presentations include:

  • Mining Machine 2 Machine Data (Katharina Morik, TU Dortmund University)
  • Handling Big Data (Andras Benczur, MTA SZTAKI)
  • Introduction of RapidAnalytics at Telenor (Telenor and United Consult)
  • and more

Here is a list of complete program

 

Program

 

Time
Slot
Tuesday
Training / Workshop 1
Wednesday
Conference 1
Thursday
Conference 2
Friday
Training / Workshop 2
09:00 – 10:30
Introductory Speech
Ingo Mierswa (Rapid-I)Resource-aware Data Mining or M2M Mining (Invited Talk)

Katharina Morik (TU Dortmund University)

More information

 

Data Analysis

 

NeurophRM: Integration of the Neuroph framework into RapidMiner
Miloš Jovanović, Jelena Stojanović, Milan Vukićević, Vera Stojanović, Boris Delibašić (University of Belgrade)

To be announced (Invited Talk)
Andras Benczur 

Recommender Systems

 

Extending RapidMiner with Recommender Systems Algorithms
Matej Mihelčić, Nino Antulov-Fantulin, Matko Bošnjak, Tomislav Šmuc (Ruđer Bošković Institute)

Implementation of User Based Collaborative Filtering in RapidMiner
Sérgio Morais, Carlos Soares (Universidade do Porto)

Parallel Training / Workshop Session

Advanced Data Mining and Data Transformations

or

Development Workshop Part 2

10:30 – 11:00
Coffee Break
Coffee Break
Coffee Break
11:00 – 12:30
Data Analysis

Nearest-Neighbor and Clustering based Anomaly Detection Algorithms for RapidMiner
Mennatallah Amer, Markus Goldstein (DFKI)

Customers’ LifeStyle Targeting on Big Data using Rapid Miner
Maksim Drobyshev (LifeStyle Marketing Ltd)

Robust GPGPU Plugin Development for RapidMiner
Andor Kovács, Zoltán Prekopcsák (Budapest University of Technology and Economics)

Extensions

 

Optimization Plugin For RapidMiner
Venkatesh Umaashankar, Sangkyun Lee (TU Dortmund University; presented by Hendrik Blom)

 

Image Mining Extension – Year After
Radim Burget, Václav Uher, Jan Mašek (Brno University of Technology)

Incorporating R Plots into RapidMiner Reports
Peter Jeszenszky (University of Debrecen)

12:30 – 13:30
Lunch
Lunch
Lunch
13:30 – 15:30
Parallel Training / Workshop Session

Basic Data Mining and Data Transformations

or

Development Workshop Part 1

Applications

 

Introduction of RapidAnalyticy Enterprise Edition at Telenor Hungary
t.b.a. (Telenor Hungary and United Consult)

 

Application of RapidMiner in Steel Industry Research and Development
Bengt-Henning Maas, Hakan Koc, Martin Bretschneider (Salzgitter Mannesmann Forschung)

A Comparison of Data-driven Models for Forecast River Flow
Milan Cisty, Juraj Bezak (Slovak University of Technology)

Portfolio Optimization Using Local Linear Regression Ensembles in Rapid Miner
Gábor Nagy, Tamás Henk, Gergő Barta (Budapest University of Technology and Economics)

Extensions

 

An Octave Extension for RapidMiner
Sylvain Marié (Schneider Electric)

 

Unstructured Data

 

Processing Data Streams with the RapidMiner Streams-Plugin
Christian Bockermann, Hendrik Blom (TU Dortmund)

Automated Creation of Corpuses for the Needs of Sentiment Analysis
Peter Koncz, Jan Paralic (Technical University of Kosice)

 

Demonstration: News from the Rapid-I Labs
Simon Fischer; Rapid-I

This short session demonstrates the latest developments from the Rapid-I lab and will let you how you can build powerful analysis processes and routines by using those RapidMiner tools.

Certification Exam
15:30 – 16:00
Coffee Break
Coffee Break
Coffee Break
16:00 – 18:00
Book Presentation and Game Show

Data Mining for the Masses: A New Textbook on Data Mining for Everyone
Matthew North (Washington & Jefferson College)

Matthew North presents his new book “Data Mining for the Masses” introducing data mining to a broader audience and making use of RapidMiner for practical data mining problems.

 

Game Show
Did you miss last years’ game show “Who wants to be a data miner?”? Use RapidMiner for problems it was never created for and beat the time and other contestants!

User Support

Get some Coffee for free – Writing Operators with RapidMiner Beans
Christian Bockermann, Hendrik Blom (TU Dortmund)

Meta-Modeling Execution Times of RapidMiner operators
Matija Piškorec, Matko Bošnjak, Tomislav Šmuc (Ruđer Bošković Institute)

Conference day ends at ca. 17:00.

19:30
Social Event (Conference Dinner)
Social Event (Visit of Bar District)

 

and you should have a look at https://rapid-i.com/rcomm2012f/index.php?option=com_content&view=article&id=65

Conference is in Budapest, Hungary,Europe.

( Disclaimer- Rapid Miner is an advertising sponsor of Decisionstats.com in case you didnot notice the two banner sized ads.)

 

Rapid Miner User Conference 2012

One of those cool conferences that is on my bucket list- this time in Hungary (That’s a nice place)

But I am especially interested in seeing how far Radoop has come along !

Disclaimer- Rapid Miner has been a Decisionstats.com sponsor  for many years. It is also a very cool software but I like the R Extension facility even more!

—————————————————————

and not very expensive too compared to other User Conferences in Europe!-

http://rcomm2012.org/index.php/registration/prices

Information about Registration

  • Early Bird registration until July 20th, 2012.
  • Normal registration from July 21st, 2012 until August 13th, 2012.
  • Latest registration from August 14th, 2012 until August 24th, 2012.
  • Students have to provide a valid Student ID during registration.
  • The Dinner is included in the All Days and in the Conference packages.
  • All prices below are net prices. Value added tax (VAT) has to be added if applicable.

Prices for Regular Visitors

Days and Event
Early Bird Rate
Normal Rate
Latest Registration
Tuesday

(Training / Development 1)

190 Euro 230 Euro 280 Euro
Wednesday + Thursday

(Conference)

290 Euro 350 Euro 420 Euro
Friday

(Training / Development 2 and Exam)

190 Euro 230 Euro 280 Euro
All Days

(Full Package)

610 Euro 740 Euro 900 Euro

Prices for Authors and Students

In case of students, please note that you will have to provide a valid student ID during registration.

Days and Event
Early Bird Rate
Normal Rate
Latest Registration
Tuesday

(Training / Development 1)

90 Euro 110 Euro 140 Euro
Wednesday + Thursday

(Conference)

140 Euro 170 Euro 210 Euro
Friday

(Training / Development 2 and Exam)

90 Euro 110 Euro 140 Euro
All Days

(Full Package)

290 Euro 350 Euro 450 Euro
Time
Slot
Tuesday
Training / Workshop 1
Wednesday
Conference 1
Thursday
Conference 2
Friday
Training / Workshop 2
09:00 – 10:30
Introductory Speech
Ingo Mierswa; Rapid-I 

Data Analysis

 

NeurophRM: Integration of the Neuroph framework into RapidMiner
Miloš Jovanović, Jelena Stojanović, Milan Vukićević, Vera Stojanović, Boris Delibašić (University of Belgrade)

To be announced (Invited Talk)
To be announced

 

Recommender Systems

 

Extending RapidMiner with Recommender Systems Algorithms
Matej Mihelčić, Nino Antulov-Fantulin, Matko Bošnjak, Tomislav Šmuc (Ruđer Bošković Institute)

Implementation of User Based Collaborative Filtering in RapidMiner
Sérgio Morais, Carlos Soares (Universidade do Porto)

Parallel Training / Workshop Session

Advanced Data Mining and Data Transformations

or

Development Workshop Part 2

10:30 – 12:30
Data Analysis

Nearest-Neighbor and Clustering based Anomaly Detection Algorithms for RapidMiner
Mennatallah Amer, Markus Goldstein (DFKI)

Customers’ LifeStyle Targeting on Big Data using Rapid Miner
Maksim Drobyshev (LifeStyle Marketing Ltd)

Robust GPGPU Plugin Development for RapidMiner
Andor Kovács, Zoltán Prekopcsák (Budapest University of Technology and Economics)

Extensions

Image Mining Extension – Year After
Radim Burget, Václav Uher, Jan Mašek (Brno University of Technology)

Incorporating R Plots into RapidMiner Reports
Peter Jeszenszky (University of Debrecen)

An Octave Extension for RapidMiner
Sylvain Marié (Schneider Electric)

12:30 – 13:30
Lunch
Lunch
Lunch
13:30 – 15:00
Parallel Training / Workshop Session

Basic Data Mining and Data Transformations

or

Development Workshop Part 1

Applications

Application of RapidMiner in Steel Industry Research and Development
Bengt-Henning Maas, Hakan Koc, Martin Bretschneider (Salzgitter Mannesmann Forschung)

A Comparison of Data-driven Models for Forecast River Flow
Milan Cisty, Juraj Bezak (Slovak University of Technology)

Portfolio Optimization Using Local Linear Regression Ensembles in Rapid Miner
Gábor Nagy, Tamás Henk, Gergő Barta (Budapest University of Technology and Economics)

Unstructured Data


Processing Data Streams with the RapidMiner Streams-Plugin
Christian Bockermann, Hendrik Blom (TU Dortmund)

Automated Creation of Corpuses for the Needs of Sentiment Analysis
Peter Koncz, Jan Paralic (Technical University of Kosice)

 

Demonstration

 

News from the Rapid-I Labs
Simon Fischer; Rapid-I

This short session demonstrates the latest developments from the Rapid-I lab and will let you how you can build powerful analysis processes and routines by using those RapidMiner tools.

Certification Exam
15:00 – 17:00
Book Presentation and Game Show

Data Mining for the Masses: A New Textbook on Data Mining for Everyone
Matthew North (Washington & Jefferson College)

Matthew North presents his new book “Data Mining for the Masses” introducing data mining to a broader audience and making use of RapidMiner for practical data mining problems.

 

Game Show
Did you miss last years’ game show “Who wants to be a data miner?”? Use RapidMiner for problems it was never created for and beat the time and other contestants!

User Support

Get some Coffee for free – Writing Operators with RapidMiner Beans
Christian Bockermann, Hendrik Blom (TU Dortmund)

Meta-Modeling Execution Times of RapidMiner operators
Matija Piškorec, Matko Bošnjak, Tomislav Šmuc (Ruđer Bošković Institute) 

19:00
Social Event (Conference Dinner)
Social Event (Visit of Bar District)

 

Training: Basic Data Mining and Data Transformations

This is a short introductory training course for users who are not yet familiar with RapidMiner or only have a few experiences with RapidMiner so far. The topics of this training session include

  • Basic Usage
    • User Interface
    • Creating and handling RapidMiner repositories
    • Starting a new RapidMiner project
    • Operators and processes
    • Loading data from flat files
    • Storing data, processes, and results
  • Predictive Models
    • Linear Regression
    • Naïve Bayes
    • Decision Trees
  • Basic Data Transformations
    • Changing names and roles
    • Handling missing values
    • Changing value types by discretization and dichotimization
    • Normalization and standardization
    • Filtering examples and attributes
  • Scoring and Model Evaluation
    • Applying models
    • Splitting data
    • Evaluation methods
    • Performance criteria
    • Visualizing Model Performance

 

Training: Advanced Data Mining and Data Transformations

This is a short introductory training course for users who already know some basic concepts of RapidMiner and data mining and have already used the software before, for example in the first training on Tuesday. The topics of this training session include

  • Advanced Data Handling
    • Sampling
    • Balancing data
    • Joins and Aggregations
    • Detection and removal of outliers
    • Dimensionality reduction
  • Control process execution
    • Remember process results
    • Recall process results
    • Loops
    • Using branches and conditions
    • Exception handling
    • Definition of macros
    • Usage of macros
    • Definition of log values
    • Clearing log tables
    • Transforming log tables to data

 

Development Workshop Part 1 and Part 2

Want to exchange ideas with the developers of RapidMiner? Or learn more tricks for developing own operators and extensions? During our development workshops on Tuesday and Friday, we will build small groups of developers each working on a small development project around RapidMiner. Beginners will get a comprehensive overview of the architecture of RapidMiner before making the first steps and learn how to write own operators. Advanced developers will form groups with our experienced developers, identify shortcomings of RapidMiner and develop a new extension which might be presented during the conference already. Unfinished work can be continued in the second workshop on Friday before results might be published on the Marketplace or can be taken home as a starting point for new custom operators.

Webscraping using iMacros

The noted Diamonds dataset in the ggplot2 package of R is actually culled from the website http://www.diamondse.info/diamond-prices.asp

However it has ~55000 diamonds, while the whole Diamonds search engine has almost ten times that number. Using iMacros – a Google Chrome Plugin, we can scrape that data (or almost any data). The iMacros chrome plugin is available at  https://chrome.google.com/webstore/detail/cplklnmnlbnpmjogncfgfijoopmnlemp while notes on coding are at http://wiki.imacros.net

Imacros makes coding as easy as recording macro and the code is automatcially generated for whatever actions you do. You can set parameters to extract only specific parts of the website, and code can be run into a loop (of 9999 times!)

Here is the iMacros code-Note you need to navigate to the web site http://www.diamondse.info/diamond-prices.asp before running it

VERSION BUILD=5100505 RECORDER=CR
FRAME F=1
SET !EXTRACT_TEST_POPUP NO
SET !ERRORIGNORE YES
TAG POS=6 TYPE=TABLE ATTR=TXT:* EXTRACT=TXT
TAG POS=1 TYPE=DIV ATTR=CLASS:paginate_enabled_next
SAVEAS TYPE=EXTRACT FOLDER=* FILE=test+3

 

 

 

 

 

 

 

 

 

and voila- all the diamonds you need to analyze!

The returning data can be read using the standard delimiter data munging in the language of SAS or R.

More on IMacros from

https://chrome.google.com/webstore/detail/cplklnmnlbnpmjogncfgfijoopmnlemp/details

Description

Automate your web browser. Record and replay repetitious work

If you encounter any problems with iMacros for Chrome, please let us know in our Chrome user forum at http://forum.iopus.com/viewforum.php?f=21

Our forum is also the best place for new feature suggestions :-)
----

iMacros was designed to automate the most repetitious tasks on the web. If there’s an activity you have to do repeatedly, just record it in iMacros. The next time you need to do it, the entire macro will run at the click of a button! With iMacros, you can quickly and easily fill out web forms, remember passwords, create a webmail notifier, and more. You can keep the macros on your computer for your own use, use them within bookmark sync / Xmarks or share them with others by embedding them on your homepage, blog, company Intranet or any social bookmarking service as bookmarklet. The uses are limited only by your imagination!

Popular uses are as web macro recorder, form filler on steroids and highly-secure password manager (256-bit AES encryption).


New RCommander with ggplot #rstats

 

My favorite GUI (or one of them) R Commander has a relatively new plugin called KMGGplot2. Until now Deducer was the only GUI with ggplot features , but the much lighter and more popular R Commander has been a long champion in people wanting to pick up R quickly.

 

http://cran.r-project.org/web/packages/RcmdrPlugin.KMggplot2/

RcmdrPlugin.KMggplot2: Rcmdr Plug-In for Kaplan-Meier Plot and Other Plots by Using the ggplot2 Package

 

As you can see by the screenshot- it makes ggplot even easier for people (like R  newbies and experienced folks alike)

 

This package is an R Commander plug-in for Kaplan-Meier plot and other plots by using the ggplot2 package.

Version: 0.1-0
Depends: R (≥ 2.15.0), stats, methods, grid, Rcmdr (≥ 1.8-4), ggplot2 (≥ 0.9.1)
Imports: tcltk2 (≥ 1.2-3), RColorBrewer (≥ 1.0-5), scales (≥ 0.2.1), survival (≥ 2.36-14)
Published: 2012-05-18
Author: Triad sou. and Kengo NAGASHIMA
Maintainer: Triad sou. <triadsou at gmail.com>
License: GPL-2
CRAN checks: RcmdrPlugin.KMggplot2 results

 

----------------------------------------------------------------
NEWS file for the RcmdrPlugin.KMggplot2 package
----------------------------------------------------------------

----------------------------------------------------------------

Changes in version 0.1-0 (2012-05-18)

 o Restructuring implementation approach for efficient
   maintenance.
 o Added options() for storing package specific options (e.g.,
   font size, font family, ...).
 o Added a theme: theme_simple().
 o Added a theme element: theme_rect2().
 o Added a list box for facet_xx() functions in some menus
   (Thanks to Professor Murtaza Haider).
 o Kaplan-Meier plot: added confidence intervals.
 o Box plot: added violin plots.
 o Bar chart for discrete variables: deleted dynamite plots.
 o Bar chart for discrete variables: added stacked bar charts.
 o Scatter plot matrix: added univariate plots at diagonal
   positions (ggplot2::plotmatrix).
 o Deleted the dummy data for histograms, which is large in
   size.

----------------------------------------------------------------

Changes in version 0.0-4 (2011-07-28)

 o Fixed "scale_y_continuous(formatter = "percent")" to
   "scale_y_continuous(labels = percent)" for ggplot2
   (>= 0.9.0).
 o Fixed "legend = FALSE" to "show_guide = FALSE" for
   ggplot2 (>= 0.9.0).
 o Fixed the DESCRIPTION file for ggplot2 (>= 0.9.0) dependency.

----------------------------------------------------------------

Changes in version 0.0-3 (2011-07-28; FIRST RELEASE VERSION)

 o Kaplan-Meier plot: Show no. at risk table on outside.
 o Histogram: Color coding.
 o Histogram: Density estimation.
 o Q-Q plot: Create plots based on a maximum likelihood estimate
   for the parameters of the selected theoretical distribution.
 o Q-Q plot: Create plots based on a user-specified theoretical
   distribution.
 o Box plot / Errorbar plot: Box plot.
 o Box plot / Errorbar plot: Mean plus/minus S.D.
 o Box plot / Errorbar plot: Mean plus/minus S.D. (Bar plot).
 o Box plot / Errorbar plot: 95 percent Confidence interval
   (t distribution).
 o Box plot / Errorbar plot: 95 percent Confidence interval
   (bootstrap).
 o Scatter plot: Fitting a linear regression.
 o Scatter plot: Smoothing with LOESS for small datasets or GAM
   with a cubic regression basis for large data.
 o Scatter plot matrix: Fitting a linear regression.
 o Scatter plot matrix: Smoothing with LOESS for small datasets
   or GAM with a cubic regression basis for large data.
 o Line chart: Normal line chart.
 o Line chart: Line char with a step function.
 o Line chart: Area plot.
 o Pie chart: Pie chart.
 o Bar chart for discrete variables: Bar chart for discrete
   variables.
 o Contour plot: Color coding.
 o Contour plot: Heat map.
 o Distribution plot: Normal distribution.
 o Distribution plot: t distribution.
 o Distribution plot: Chi-square distribution.
 o Distribution plot: F distribution.
 o Distribution plot: Exponential distribution.
 o Distribution plot: Uniform distribution.
 o Distribution plot: Beta distribution.
 o Distribution plot: Cauchy distribution.
 o Distribution plot: Logistic distribution.
 o Distribution plot: Log-normal distribution.
 o Distribution plot: Gamma distribution.
 o Distribution plot: Weibull distribution.
 o Distribution plot: Binomial distribution.
 o Distribution plot: Poisson distribution.
 o Distribution plot: Geometric distribution.
 o Distribution plot: Hypergeometric distribution.
 o Distribution plot: Negative binomial distribution.

How to learn to be a hacker easily

1) Are you sure. It is tough to be a hacker. And football players get all the attention.

2) Really? Read on

3) Read Hacker’s Code

http://muq.org/~cynbe/hackers-code.html

The Hacker’s Code

“A hacker of the Old Code.”

  • Hackers come and go, but a great hack is forever.
  • Public goods belong to the public.*
  • Software hoarding is evil.
    Software does the greatest good given to the greatest number.
  • Don’t be evil.
  • Sourceless software sucks.
  • People have rights.
    Organizations live on sufferance.
  • Governments are organizations.
  • If it is wrong when citizens do it,
    it is wrong when governments do it.
  • Information wants to be free.
    Information deserves to be free.
  • Being legal doesn’t make it right.
  • Being illegal doesn’t make it wrong.
  • Subverting tyranny is the highest duty.
  • Trust your technolust!

4) Read How to be a hacker by

Eric Steven Raymond

http://www.catb.org/~esr/faqs/hacker-howto.html

or just get the Hacker Attitude

The Hacker Attitude

1. The world is full of fascinating problems waiting to be solved.
2. No problem should ever have to be solved twice.
3. Boredom and drudgery are evil.
4. Freedom is good.
5. Attitude is no substitute for competence.
5) If you are tired of reading English, maybe I should move on to technical stuff
6) Create your hacking space, a virtual disk on your machine.
You will need to learn a bit of Linux. If you are a Windows user, I recommend creating a VMWare partition with Ubuntu
If you like Mac, I recommend the more aesthetic Linux Mint.
How to create your virtual disk-
read here-
Download VM Player here
http://www.vmware.com/support/product-support/player/
Down iso image of operating system here
http://ubuntu.com
Downloading is the longest thing in this exercise
Now just do what is written here
http://www.vmware.com/pdf/vmware_player40.pdf
or if you want to try and experiment with other ways to use Windows and Linux just read this
http://www.decisionstats.com/ways-to-use-both-windows-and-linux-together/
Moving data back and forth between your new virtual disk and your old real disk
http://www.decisionstats.com/moving-data-between-windows-and-ubuntu-vmware-partition/
7) Get Tor to hide your IP address when on internet
https://www.torproject.org/docs/tor-doc-windows.html.en
8a ) Block Ads using Ad-block plugin when surfing the internet (like 14.95 million other users)
https://addons.mozilla.org/en-US/firefox/addon/adblock-plus/
 8b) and use Mafiafire to get elusive websites
https://addons.mozilla.org/en-US/firefox/addon/mafiaafire-redirector/
9) Get a  Bit Torrent Client at http://www.utorrent.com/
This will help you download stuff
10) Hacker Culture Alert-
This instruction is purely for sharing the culture but not the techie work of being a hacker
The website Pirate bay acts like a search engine for Bit torrents 
http://thepiratebay.se/
Visiting it is considered bad since you can get lots of music, videos, movies etc for free, without paying copyright fees.
The website 4chan is considered a meeting place to meet other hackers. The site can be visually shocking
http://boards.4chan.org/b/
You need to do atleast set up these systems, read the websites and come back in N month time for second part in this series on how to learn to be a hacker. That will be the coding part.
END OF PART  1
Updated – sorry been a bit delayed on next part. Will post soon.

Automatically creating tags for big blogs with WordPress

I use the simple-tags plugin in WordPress for automatically creating and posting tags. I am hoping this makes the site better to navigate. Given the fact that I had not been a very efficient tagger before, this plugin can really be useful for someone in creating tags for more than 100 (or 1000 posts) especially WordPress based blog aggregators.

 

 

The plugin is available here -

Simple Tags is the successor of Simple Tagging Plugin This is THE perfect tool to manage perfectly your WP terms for any taxonomy

It was written with this philosophy : best performances, more secured and brings a lot of new functions

This plugin is developped on WordPress 3.3, with the constant WP_DEBUG to TRUE.

  • Administration
  • Tags suggestion from Yahoo! Term Extraction API, OpenCalais, Alchemy, Zemanta, Tag The Net, Local DB with AJAX request
    • Compatible with TinyMCE, FCKeditor, WYMeditor and QuickTags
  • tags management (rename, delete, merge, search and add tags, edit tags ID)
  • Edit mass tags (more than 50 posts once)
  • Auto link tags in post content
  • Auto tags !
  • Type-ahead input tags / Autocompletion Ajax
  • Click tags
  • Possibility to tag pages (not only posts) and include them inside the tags results
  • Easy configuration ! (in WP admin)

The above plugin can be combined with the RSS Aggregator plugin for Search Engine Optimization purposes

Ajay-You can also combine this plugin with RSS auto post blog aggregator (read instructions here) and create SEO optimized Blog Aggregation or Curation

Related -http://www.decisionstats.com/creating-a-blog-aggregator-for-free/

Does the Internet need its own version of credit bureaus

Data Miners love data. The more data they have the better model they can build. Consumers do not love data so much and find sharing data generally a cumbersome task. They need to be incentivize for filling out survey forms , and for signing to loyalty programs. Lawyers, and privacy advocates love to use examples of improper data collection and usage as the harbinger of an ominous scenario. George Orwell’s 1984 never “mentioned” anything about Big Brother trying to sell you one more loan, credit card or product.

Data generated by customers is now growing without their needing to fill out forms and surveys. This data is about their preferences , tastes and choices and is growing in size and depth because it is generated from social media channels on the Internet.It is this data that can be and is captured by social media analytics.

Mobile data is also growing, including usage of location based applications and usage of Internet from the mobile phone is leading to further increases in data about consumers.Increasingly , location based applications help to provide a much more relevant context to the data generated. Just mobile data is expected to grow to 15 exabytes by 2015.

People want to have more and more conversations online publicly , share pictures , activity and interact with a large number of people whom  they have never met. But resent that information being used or abused without their knowledge.

Also the Internet is increasingly being consolidated into a few players like Microsoft, Amazon, Google  and Facebook, who are unable to agree on agreements to share that data between themselves. Interestingly you can use Yahoo as a data middleman between Google and Facebook.

At the same time, more and more purchases are being done online by customers and Internet advertising has grown much above the rate of growth of other mediums of communication.
Internet retail sales have the advantage that better demand predictability can lead to lower inventories as retailers need not stock up displays to look good. An Amazon warehouse need not keep material to simply stock up it shelves like a K-Mart does.

Our Hypothesis – An Analogy with how Financial Data Marketing is managed offline

  1. Financial information regarding spending and saving is much more sensitive yet the presence of credit bureaus alleviates these concerns.
  2. Credit bureaus collect information from all sources, aggregate and anonymize the individual components accordingly.They use SSN as a unique identifier.
  3. The Internet has a unique number too , called the Internet Protocol Address (I.P) 
  4. Should there be a unique identifier like Internet Security Number for the Internet to ensure adequate balance between the need for privacy as well as the need for appropriate targeting? 

After all, no one complains about privacy intrusions if their credit bureau data is aggregated , rolled up, and anonymized and turned into a propensity model for sending them direct mailers.

Advertising using Social Media and Internet

https://www.facebook.com/about/ads/#stories

1. A business creates an ad
Let’s say a gym opens in your neighborhood. The owner creates an ad to get people to come in for a free workout.
2. Facebook gets paid to deliver the ad
The owner sends the ad to Facebook and describes who should see it: people who live nearby and like running.
The right people see the ad
3. Facebook only shows you the ad if you live in town and like to run. That’s how advertisers reach you without knowing who you are.

Adding in credit bureau data and legislative regulation for anonymizing  and handling privacy data can expand the internet selling market, which is much more efficient from a supply chain perspective than the offline display and shop models.

Privacy Regulations on Marketing using Internet data
Should laws on opt out and do not mail, do not call, lists be extended to do not show ads , do not collect information on social media. In the offline world, you can choose to be part of direct marketing or opt out of direct marketing by enrolling yourself in various do not solicit lists. On the internet the only option from advertisements is to use the Adblock plugin if you are Google Chrome or Firefox browser user. Even Facebook gives you many more ads than you need to see.

One reason for so many ads on the Internet is lack of central anonymize data repositories for giving high quality data to these marketing companies.Software that can be used for social media analytics is already available off the shelf.

The growth of the Internet has helped carved out a big industry for Internet web analytics so it is a matter of time before social media analytics becomes a multi billion dollar business as well. What new developments would be unleashed in this brave new world is just a matter of time, and of course of the social media data!

Follow

Get every new post delivered to your Inbox.

Join 839 other followers