Home » Posts tagged 'modeling'

Tag Archives: modeling

Data Frame in Python

Exploring some Python Packages and R packages to move /work with both Python and R without melting your brain or exceeding your project deadline

—————————————

If you liked the data.frame structure in R, you have some way to work with them at a faster processing speed in Python.

Here are three packages that enable you to do so-

(1) pydataframe http://code.google.com/p/pydataframe/

An implemention of an almost R like DataFrame object. (install via Pypi/Pip: “pip install pydataframe”)

Usage:

        u = DataFrame( { "Field1": [1, 2, 3],
                        "Field2": ['abc', 'def', 'hgi']},
                        optional:
                         ['Field1', 'Field2']
                         ["rowOne", "rowTwo", "thirdRow"])

A DataFrame is basically a table with rows and columns.

Columns are named, rows are numbered (but can be named) and can be easily selected and calculated upon. Internally, columns are stored as 1d numpy arrays. If you set row names, they’re converted into a dictionary for fast access. There is a rich subselection/slicing API, see help(DataFrame.get_item) (it also works for setting values). Please note that any slice get’s you another DataFrame, to access individual entries use get_row(), get_column(), get_value().

DataFrames also understand basic arithmetic and you can either add (multiply,…) a constant value, or another DataFrame of the same size / with the same column names, like this:

#multiply every value in ColumnA that is smaller than 5 by 6.
my_df[my_df[:,'ColumnA'] < 5, 'ColumnA'] *= 6

#you always need to specify both row and column selectors, use : to mean everything
my_df[:, 'ColumnB'] = my_df[:,'ColumnA'] + my_df[:, 'ColumnC']

#let's take every row that starts with Shu in ColumnA and replace it with a new list (comprehension)
select = my_df.where(lambda row: row['ColumnA'].startswith('Shu'))
my_df[select, 'ColumnA'] = [row['ColumnA'].replace('Shu', 'Sha') for row in my_df[select,:].iter_rows()]

Dataframes talk directly to R via rpy2 (rpy2 is not a prerequiste for the library!)

 

(2) pandas http://pandas.pydata.org/

Library Highlights

  • A fast and efficient DataFrame object for data manipulation with integrated indexing;
  • Tools for reading and writing data between in-memory data structures and different formats: CSV and text files, Microsoft Excel, SQL databases, and the fast HDF5 format;
  • Intelligent data alignment and integrated handling of missing data: gain automatic label-based alignment in computations and easily manipulate messy data into an orderly form;
  • Flexible reshaping and pivoting of data sets;
  • Intelligent label-based slicing, fancy indexing, and subsetting of large data sets;
  • Columns can be inserted and deleted from data structures for size mutability;
  • Aggregating or transforming data with a powerful group by engine allowing split-apply-combine operations on data sets;
  • High performance merging and joining of data sets;
  • Hierarchical axis indexing provides an intuitive way of working with high-dimensional data in a lower-dimensional data structure;
  • Time series-functionality: date range generation and frequency conversion, moving window statistics, moving window linear regressions, date shifting and lagging. Even create domain-specific time offsets and join time series without losing data;
  • The library has been ruthlessly optimized for performance, with critical code paths compiled to C;
  • Python with pandas is in use in a wide variety of academic and commercial domains, including Finance, Neuroscience, Economics, Statistics, Advertising, Web Analytics, and more.

Why not R?

First of all, we love open source R! It is the most widely-used open source environment for statistical modeling and graphics, and it provided some early inspiration for pandas features. R users will be pleased to find this library adopts some of the best concepts of R, like the foundational DataFrame (one user familiar with R has described pandas as “R data.frame on steroids”). But pandas also seeks to solve some frustrations common to R users:

  • R has barebones data alignment and indexing functionality, leaving much work to the user. pandas makes it easy and intuitive to work with messy, irregularly indexed data, like time series data. pandas also provides rich tools, like hierarchical indexing, not found in R;
  • R is not well-suited to general purpose programming and system development. pandas enables you to do large-scale data processing seamlessly when developing your production applications;
  • Hybrid systems connecting R to a low-productivity systems language like Java, C++, or C# suffer from significantly reduced agility and maintainability, and you’re still stuck developing the system components in a low-productivity language;
  • The “copyleft” GPL license of R can create concerns for commercial software vendors who want to distribute R with their software under another license. Python and pandas use more permissive licenses.

(3) datamatrix http://pypi.python.org/pypi/datamatrix/0.8

datamatrix 0.8

A Pythonic implementation of R’s data.frame structure.

Latest Version: 0.9

This module allows access to comma- or other delimiter separated files as if they were tables, using a dictionary-like syntax. DataMatrix objects can be manipulated, rows and columns added and removed, or even transposed

—————————————————————–

Modeling in Python

(more…)

Analytics 2012 Conference

from http://www.sas.com/events/analytics/us/index.html

Analytics 2012 Conference

SAS and more than 1,000 analytics experts gather at

Caesars Palace
Caesars Palace

Analytics 2012 Conference Details

Pre-Conference Workshops – Oct 7
Conference – Oct 8-9
Post-Conference Training – Oct 10-12
Caesars Palace, Las Vegas

Keynote Speakers

The following are confirmed keynote speakers for Analytics 2012. Jim Goodnight Since he co-founded SAS in 1976, Jim Goodnight has served as the company’s Chief Executive Officer.

William Hakes Dr. William Hakes is the CEO and co-founder of Link Analytics, an analytical technology company focused on mobile, energy and government verticals.

Tim Rey Tim Rey  has written over 100 internal papers, published 21 external papers, and delivered numerous keynote presentations and technical talks at various quantitative methods forums. Recently he has co-chaired both forecasting and data mining conferences. He is currently in the process of co-writing a book, Applied Data Mining for Forecasting.

http://www.sas.com/events/analytics/us/train.html

Pre-Conference

Plan to come to Analytics 2012 a day early and participate in one of the pre-conference workshops or take a SAS Certification exam. Prices for all of the preconference workshops, except for SAS Sentiment Analysis Studio: Introduction to Building Models and the Business Analytics Consulting Workshops, are included in the conference package pricing. You will be prompted to select your pre-conference training options when you register.

Sunday Morning Workshop

SAS Sentiment Analysis Studio: Introduction to Building Models

This course provides an introduction to SAS Sentiment Analysis Studio. It is designed for system designers, developers, analytical consultants and managers who want to understand techniques and approaches for identifying sentiment in textual documents.
View outline
Sunday, Oct. 7, 8:30a.m.-12p.m. – $250

Sunday Afternoon Workshops

Business Analytics Consulting Workshops

This workshop is designed for the analyst, statistician, or executive who wants to discuss best-practice approaches to solving specific business problems, in the context of analytics. The two-hour workshop will be customized to discuss your specific analytical needs and will be designed as a one-on-one session for you, including up to five individuals within your company sharing your analytical goal. This workshop is specifically geared for an expert tasked with solving a critical business problem who needs consultation for developing the analytical approach required. The workshop can be customized to meet your needs, from a deep-dive into modeling methods to a strategic plan for analytic initiatives. In addition to the two hours at the conference location, this workshop includes some advanced consulting time over the phone, making it a valuable investment at a bargain price.
View outline
Sunday, Oct. 7; 1-3 p.m. or 3:30-5:30 p.m. – $200

Demand-Driven Forecasting: Sensing Demand Signals, Shaping and Predicting Demand

This half-day lecture teaches students how to integrate demand-driven forecasting into the consensus forecasting process and how to make the current demand forecasting process more demand-driven.
View outline
Sunday, Oct. 7; 1-5 p.m.

Forecast Value Added Analysis

Forecast Value Added (FVA) is the change in a forecasting performance metric (such as MAPE or bias) that can be attributed to a particular step or participant in the forecasting process. FVA analysis is used to identify those process activities that are failing to make the forecast any better (or might even be making it worse). This course provides step-by-step guidelines for conducting FVA analysis – to identify and eliminate the waste, inefficiency, and worst practices from your forecasting process. The result can be better forecasts, with fewer resources and less management time spent on forecasting.
View outline
Sunday, Oct. 7; 1-5 p.m.

SAS Enterprise Content Categorization: An Introduction

This course gives an introduction to methods of unstructured data analysis, document classification and document content identification. The course also uses examples as the basis for constructing parse expressions and resulting entities.
View outline
Sunday, Oct. 7; 1-5 p.m.

Introduction to Data Mining and SAS Enterprise Miner

This course serves as an introduction to data mining and SAS Enterprise Miner for Desktop software. It is designed for data analysts and qualitative experts as well as those with less of a technical background who want a general understanding of data mining.
View outline
Sunday, Oct. 7, 1-5 p.m.

Modeling Trend, Cycles, and Seasonality in Time Series Data Using PROC UCM

This half-day lecture teaches students how to model, interpret, and predict time series data using UCMs. The UCM procedure analyzes and forecasts equally spaced univariate time series data using the unobserved components models (UCM). This course is designed for business analysts who want to analyze time series data to uncover patterns such as trend, seasonal effects, and cycles using the latest techniques.
View outline
Sunday, Oct. 7, 1-5 p.m.

SAS Rapid Predictive Modeler

This seminar will provide a brief introduction to the use of SAS Enterprise Guide for graphical and data analysis. However, the focus will be on using SAS Enterprise Guide and SAS Enterprise Miner along with the Rapid Predictive Modeling component to build predictive models. Predictive modeling will be introduced using the SEMMA process developed with the introduction of SAS Enterprise Miner. Several examples will be used to illustrate the use of the Rapid Predictive Modeling component, and interpretations of the model results will be provided.
View outline
Sunday, Oct. 7, 1-5 p.m

RCOMM 2012 goes live in August

An awesome conference by an awesome software Rapid Miner remains one of the leading enterprise grade open source software , that can help you do a lot of things including flow driven data modeling ,web mining ,web crawling etc which even other software cant.

Presentations include:

  • Mining Machine 2 Machine Data (Katharina Morik, TU Dortmund University)
  • Handling Big Data (Andras Benczur, MTA SZTAKI)
  • Introduction of RapidAnalytics at Telenor (Telenor and United Consult)
  • and more

Here is a list of complete program

 

Program

 

Time
Slot
Tuesday
Training / Workshop 1
Wednesday
Conference 1
Thursday
Conference 2
Friday
Training / Workshop 2
09:00 – 10:30
Introductory Speech
Ingo Mierswa (Rapid-I)Resource-aware Data Mining or M2M Mining (Invited Talk)

Katharina Morik (TU Dortmund University)

More information

 

Data Analysis

 

NeurophRM: Integration of the Neuroph framework into RapidMiner
Miloš Jovanović, Jelena Stojanović, Milan Vukićević, Vera Stojanović, Boris Delibašić (University of Belgrade)

To be announced (Invited Talk)
Andras Benczur 

Recommender Systems

 

Extending RapidMiner with Recommender Systems Algorithms
Matej Mihelčić, Nino Antulov-Fantulin, Matko Bošnjak, Tomislav Šmuc (Ruđer Bošković Institute)

Implementation of User Based Collaborative Filtering in RapidMiner
Sérgio Morais, Carlos Soares (Universidade do Porto)

Parallel Training / Workshop Session

Advanced Data Mining and Data Transformations

or

Development Workshop Part 2

10:30 – 11:00
Coffee Break
Coffee Break
Coffee Break
11:00 – 12:30
Data Analysis

Nearest-Neighbor and Clustering based Anomaly Detection Algorithms for RapidMiner
Mennatallah Amer, Markus Goldstein (DFKI)

Customers’ LifeStyle Targeting on Big Data using Rapid Miner
Maksim Drobyshev (LifeStyle Marketing Ltd)

Robust GPGPU Plugin Development for RapidMiner
Andor Kovács, Zoltán Prekopcsák (Budapest University of Technology and Economics)

Extensions

 

Optimization Plugin For RapidMiner
Venkatesh Umaashankar, Sangkyun Lee (TU Dortmund University; presented by Hendrik Blom)

 

Image Mining Extension – Year After
Radim Burget, Václav Uher, Jan Mašek (Brno University of Technology)

Incorporating R Plots into RapidMiner Reports
Peter Jeszenszky (University of Debrecen)

12:30 – 13:30
Lunch
Lunch
Lunch
13:30 – 15:30
Parallel Training / Workshop Session

Basic Data Mining and Data Transformations

or

Development Workshop Part 1

Applications

 

Introduction of RapidAnalyticy Enterprise Edition at Telenor Hungary
t.b.a. (Telenor Hungary and United Consult)

 

Application of RapidMiner in Steel Industry Research and Development
Bengt-Henning Maas, Hakan Koc, Martin Bretschneider (Salzgitter Mannesmann Forschung)

A Comparison of Data-driven Models for Forecast River Flow
Milan Cisty, Juraj Bezak (Slovak University of Technology)

Portfolio Optimization Using Local Linear Regression Ensembles in Rapid Miner
Gábor Nagy, Tamás Henk, Gergő Barta (Budapest University of Technology and Economics)

Extensions

 

An Octave Extension for RapidMiner
Sylvain Marié (Schneider Electric)

 

Unstructured Data

 

Processing Data Streams with the RapidMiner Streams-Plugin
Christian Bockermann, Hendrik Blom (TU Dortmund)

Automated Creation of Corpuses for the Needs of Sentiment Analysis
Peter Koncz, Jan Paralic (Technical University of Kosice)

 

Demonstration: News from the Rapid-I Labs
Simon Fischer; Rapid-I

This short session demonstrates the latest developments from the Rapid-I lab and will let you how you can build powerful analysis processes and routines by using those RapidMiner tools.

Certification Exam
15:30 – 16:00
Coffee Break
Coffee Break
Coffee Break
16:00 – 18:00
Book Presentation and Game Show

Data Mining for the Masses: A New Textbook on Data Mining for Everyone
Matthew North (Washington & Jefferson College)

Matthew North presents his new book “Data Mining for the Masses” introducing data mining to a broader audience and making use of RapidMiner for practical data mining problems.

 

Game Show
Did you miss last years’ game show “Who wants to be a data miner?”? Use RapidMiner for problems it was never created for and beat the time and other contestants!

User Support

Get some Coffee for free – Writing Operators with RapidMiner Beans
Christian Bockermann, Hendrik Blom (TU Dortmund)

Meta-Modeling Execution Times of RapidMiner operators
Matija Piškorec, Matko Bošnjak, Tomislav Šmuc (Ruđer Bošković Institute)

Conference day ends at ca. 17:00.

19:30
Social Event (Conference Dinner)
Social Event (Visit of Bar District)

 

and you should have a look at https://rapid-i.com/rcomm2012f/index.php?option=com_content&view=article&id=65

Conference is in Budapest, Hungary,Europe.

( Disclaimer- Rapid Miner is an advertising sponsor of Decisionstats.com in case you didnot notice the two banner sized ads.)

 

Interview John Myles White , Machine Learning for Hackers

Here is an interview with one of the younger researchers  and rock stars of the R Project, John Myles White,  co-author of Machine Learning for Hackers.

Ajay- What inspired you guys to write Machine Learning for Hackers. What has been the public response to the book. Are you planning to write a second edition or a next book?

John-We decided to write Machine Learning for Hackers because there were so many people interested in learning more about Machine Learning who found the standard textbooks a little difficult to understand, either because they lacked the mathematical background expected of readers or because it wasn’t clear how to translate the mathematical definitions in those books into usable programs. Most Machine Learning books are written for audiences who will not only be using Machine Learning techniques in their applied work, but also actively inventing new Machine Learning algorithms. The amount of information needed to do both can be daunting, because, as one friend pointed out, it’s similar to insisting that everyone learn how to build a compiler before they can start to program. For most people, it’s better to let them try out programming and get a taste for it before you teach them about the nuts and bolts of compiler design. If they like programming, they can delve into the details later.

We once said that Machine Learning for Hackers  is supposed to be a chemistry set for Machine Learning and I still think that’s the right description: it’s meant to get readers excited about Machine Learning and hopefully expose them to enough ideas and tools that they can start to explore on their own more effectively. It’s like a warmup for standard academic books like Bishop’s.
The public response to the book has been phenomenal. It’s been amazing to see how many people have bought the book and how many people have told us they found it helpful. Even friends with substantial expertise in statistics have said they’ve found a few nuggets of new information in the book, especially regarding text analysis and social network analysis — topics that Drew and I spend a lot of time thinking about, but are not thoroughly covered in standard statistics and Machine Learning  undergraduate curricula.
I hope we write a second edition. It was our first book and we learned a ton about how to write at length from the experience. I’m about to announce later this week that I’m writing a second book, which will be a very short eBook for O’Reilly. Stay tuned for details.

Ajay-  What are the key things that a potential reader can learn from this book?

John- We cover most of the nuts and bolts of introductory statistics in our book: summary statistics, regression and classification using linear and logistic regression, PCA and k-Nearest Neighbors. We also cover topics that are less well known, but are as important: density plots vs. histograms, regularization, cross-validation, MDS, social network analysis and SVM’s. I hope a reader walks away from the book having a feel for what different basic algorithms do and why they work for some problems and not others. I also hope we do just a little to shift a future generation of modeling culture towards regularization and cross-validation.

Ajay- Describe your journey as a science student up till your Phd. What are you current research interests and what initiatives have you done with them?

John-As an undergraduate I studied math and neuroscience. I then took some time off and came back to do a Ph.D. in psychology, focusing on mathematical modeling of both the brain and behavior. There’s a rich tradition of machine learning and statistics in psychology, so I got increasingly interested in ML methods during my years as a grad student. I’m about to finish my Ph.D. this year. My research interests all fall under one heading: decision theory. I want to understand both how people make decisions (which is what psychology teaches us) and how they should make decisions (which is what statistics and ML teach us). My thesis is focused on how people make decisions when there are both short-term and long-term consequences to be considered. For non-psychologists, the classic example is probably the explore-exploit dilemma. I’ve been working to import more of the main ideas from stats and ML into psychology for modeling how real people handle that trade-off. For psychologists, the classic example is the Marshmallow experiment. Most of my research work has focused on the latter: what makes us patient and how can we measure patience?

Ajay- How can academia and private sector solve the shortage of trained data scientists (assuming there is one)?

John- There’s definitely a shortage of trained data scientists: most companies are finding it difficult to hire someone with the real chops needed to do useful work with Big Data. The skill set required to be useful at a company like Facebook or Twitter is much more advanced than many people realize, so I think it will be some time until there are undergraduates coming out with the right stuff. But there’s huge demand, so I’m sure the market will clear sooner or later.

The changes that are required in academia to prepare students for this kind of work are pretty numerous, but the most obvious required change is that quantitative people need to be learning how to program properly, which is rare in academia, even in many CS departments. Writing one-off programs that no one will ever have to reuse and that only work on toy data sets doesn’t prepare you for working with huge amounts of messy data that exhibit shifting patterns. If you need to learn how to program seriously before you can do useful work, you’re not very valuable to companies who need employees that can hit the ground running. The companies that have done best in building up data teams, like LinkedIn, have learned to train people as they come in since the proper training isn’t typically available outside those companies.
Of course, on the flipside, the people who do know how to program well need to start learning more about theory and need to start to have a better grasp of basic mathematical models like linear and logistic regressions. Lots of CS students seem not to enjoy their theory classes, but theory really does prepare you for thinking about what you can learn from data. You may not use automata theory if you work at Foursquare, but you will need to be able to reason carefully and analytically. Doing math is just like lifting weights: if you’re not good at it right now, you just need to dig in and get yourself in shape.
About-
John Myles White is a Phd Student in  Ph.D. student in the Princeton Psychology Department, where he studies human decision-making both theoretically and experimentally. Along with the political scientist Drew Conway, he is  the author of a book published by O’Reilly Media entitled “Machine Learning for Hackers”, which is meant to introduce experienced programmers to the machine learning toolkit. He is also working with Mark Hansenon a book for laypeople about exploratory data analysis.John is the lead maintainer for several R packages, including ProjectTemplate and log4r.

(TIL he has played in several rock bands!)

—–
You can read more in his own words at his blog at http://www.johnmyleswhite.com/about/
He can be contacted via social media at Google Plus at https://plus.google.com/109658960610931658914 or twitter at twitter.com/johnmyleswhite/

Interview James G Kobielus IBM Big Data

Here is an interview with  James G Kobielus, who is the Senior Program Director, Product Marketing, Big Data Analytics Solutions at IBM. Special thanks to Payal Patel Cudia of IBM’s communication team,for helping with the logistics for this.

Ajay -What are the specific parts of the IBM Platform that deal with the three layers of Big Data -variety, velocity and volume

James-Well first of all, let’s talk about the IBM Information Management portfolio. Our big data platform addresses the three layers of big data to varying degrees either together in a product , or two out of the three or even one of the three aspects. We don’t have separate products for the variety, velocity and volume separately.

Let us define these three layers-Volume refers to the hundreds of terabytes and petabytes of stored data inside organizations today. Velocity refers to the whole continuum from batch to real time continuous and streaming data.

Variety refers to multi-structure data from structured to unstructured files, managed and stored in a common platform analyzed through common tooling.

For Volume-IBM has a highly scalable Big Data platform. This includes Netezza and Infosphere groups of products, and Watson-like technologies that can support petabytes volume of data for analytics. But really the support of volume ranges across IBM’s Information Management portfolio both on the database side and the advanced analytics side.

For real time Velocity, we have real time data acquisition. We have a product called IBM Infosphere, part of our Big Data platform, that is specifically built for streaming real time data acquisition and delivery through complex event processing. We have a very rich range of offerings that help clients build a Hadoop environment that can scale.

Our Hadoop platform is the most real time capable of all in the industry. We are differentiated by our sheer breadth, sophistication and functional depth and tooling integrated in our Hadoop platform. We are differentiated by our streaming offering integrated into the Hadoop platform. We also offer a great range of modeling and analysis tools, pretty much more than any other offering in the Big Data space.

Attached- Jim’s slides from Hadoop World

Ajay- Any plans for Mahout for Hadoop

Jim- I cant speak about product plans. We have plans but I cant tell you anything more. We do have a feature in Big Insights called System ML, a library for machine learning.

Ajay- How integral are acquisitions for IBM in the Big Data space (Netezza,Cognos,SPSS etc). Is it true that everything that you have in Big Data is acquired or is the famous IBM R and D contributing here . (see a partial list of IBM acquisitions at at http://www.ibm.com/investor/strategy/acquisitions.wss )

Jim- We have developed a lot on our own. We have the deepest R and D of anybody in the industry in all things Big Data.

For example – Watson has Big Insights Hadoop at its core. Apache Hadoop is the heart and soul of Big Data (see http://www-01.ibm.com/software/data/infosphere/hadoop/ ). A great deal that makes Big Insights so differentiated is that not everything that has been built has been built by the Hadoop community.

We have built additions out of the necessity for security, modeling, monitoring, and governance capabilities into BigInsights to make it truly enterprise ready. That is one example of where we have leveraged open source and we have built our own tools and technologies and layered them on top of the open source code.

Yes of course we have done many strategic acquisitions over the last several years related to Big Data Management and we continue to do so. This quarter we have done 3 acquisitions with strong relevance to Big Data. One of them is Vivisimo (http://www-03.ibm.com/press/us/en/pressrelease/37491.wss ).

Vivisimo provides federated Big Data discovery, search and profiling capabilities to help you figure out what data is out there,what is relevance of that data to your data science project- to help you answer the question which data should you bring in your Hadoop Cluster.

 We also did Varicent , which is more performance management and we did TeaLeaf , which is a customer experience solution provider where customer experience management and optimization is one of the hot killer apps for Hadoop in the cloud. We have done great many acquisitions that have a clear relevance to Big Data.

Netezza already had a massively parallel analytics database product with an embedded library of models called Netezza Analytics, and in-database capabilties to massively parallelize Map Reduce and other analytics management functions inside the database. In many ways, Netezza provided capabilities similar to that IBM had provided for many years under the Smart Analytics Platform (http://www-01.ibm.com/software/data/infosphere/what-is-advanced-analytics/ ) .

There is a differential between Netezza and ISAS.

ISAS was built predominantly in-house over several years . If you go back a decade ago IBM acquired Ascential Software , a product portfolio that was the heart and soul of IBM InfoSphere Information Manager that is core to our big Data platform. In addition to Netezza, IBM bought SPSS two years back. We already had data mining tools and predictive modeling in the InfoSphere portfolio, but we realized we needed to have the best of breed, SPSS provided that and so IBM acquired them.

 Cognos- We had some BI reporting capabilities in the InfoSphere portfolio that we had built ourselves and also acquired for various degrees from prior acquisitions. But clearly Cognos was one of the best BI vendors , and we were lacking such a rich tool set in our product in visualization and cubing and so for that reason we acquired Cognos.

There is also Unica – which is a marketing campaign optimization which in many ways is a killer app for Hadoop. Projects like that are driving many enterprises.

Ajay- How would you rank order these acquisitions in terms of strategic importance rather than data of acquisition or price paid.

Jim-Think of Big Data as an ecosystem that has components that are fitted to particular functions for data analytics and data management. Is the database the core, or the modeling tool the core, or the governance tools the core, or is the hardware platform the core. Everything is critically important. We would love to hear from you what you think have been most important. Each acquisition has helped play a critical role to build the deepest and broadest solution offering in Big Data. We offer the hardware, software, professional services, the hosting service. I don’t think there is any validity to a rank order system.

Ajay-What are the initiatives regarding open source that Big Data group have done or are planning?

Jim- What we are doing now- We are very much involved with the Apache Hadoop community. We continue to evolve the open source code that everyone leverages.. We have built BigInsights on Apache Hadoop. We have the closest, most up to date in terms of version number to Apache Hadoop ( Hbase,HDFS, Pig etc) of all commercial distributions with our BigInsights 1.4 .

We have an R library integrated with BigInsights . We have a R library integrated with Netezza Analytics. There is support for R Models within the SPSS portfolio. We already have a fair amount of support for R across the portfolio.

Ajay- What are some of the concerns (privacy,security,regulation) that you think can dampen the promise of Big Data.

Jim- There are no showstoppers, there is really a strong momentum. Some of the concerns within the Hadoop space are immaturity of the technology, the immaturity of some of the commercial offerings out there that implement Hadoop, the lack of standardization for formal sense for Hadoop.

There is no Open Standards Body that declares, ratifies the latest version of Mahout, Map Reduce, HDFS etc. There is no industry consensus reference framework for layering these different sub projects. There are no open APIs. There are no certifications or interoperability standards or organizations to certify different vendors interoperability around a common API or framework.

The lack of standardization is troubling in this whole market. That creates risks for users because users are adopting multiple Hadoop products. There are lots of Hadoop deployments in the corporate world built around Apache Hadoop (purely open source). There may be no assurance that these multiple platforms will interoperate seamlessly. That’s a huge issue in terms of just magnifying the risk. And it increases the need for the end user to develop their own custom integrated code if they want to move data between platforms, or move map-reduce jobs between multiple distributions.

Also governance is a consideration. Right now Hadoop is used for high volume ETL on multi structured and unstructured data sources, or Hadoop is used for exploratory sand boxes for data scientists. These are important applications that are a majority of the Hadoop deployments . Some Hadoop deployments are stand alone unstructured data marts for specific applications like sentiment analysis like.

Hadoop is not yet ready for data warehousing. We don’t see a lot of Hadoop being used as an alternative to data warehouses for managing the single version of truth of system or record data. That day will come but there needs to be out there in the marketplace a broader range of data governance mechanisms , master data management, data profiling products that are mature that enterprises can use to make sure their data inside their Hadoop clusters is clean and is the single version of truth. That day has not arrived yet.

One of the great things about IBM’s acquisition of Vivisimo is that a piece of that overall governance picture is discovery and profiling for unstructured data , and that is done very well by Vivisimo for several years.

What we will see is vendors such as IBM will continue to evolve security features inside of our Hadoop platform. We will beef up our data governance capabilities for this new world of Hadoop as the core of Big Data, and we will continue to build up our ability to integrate multiple databases in our Hadoop platform so that customers can use data from a bit of Hadoop,some data from a bit of traditional relational data warehouse, maybe some noSQL technology for different roles within a very complex Big Data environment.

That latter hybrid deployment model is becoming standard across many enterprises for Big Data. A cause for concern is when your Big Data deployment has a bit of Hadoop, bit of noSQL, bit of EDW, bit of in-memory , there are no open standards or frameworks for putting it all together for a unified framework not just for interoperability but also for deployment.

There needs to be a virtualization or abstraction layer for unified access to all these different Big Data platforms by the users/developers writing the queries, by administrators so they can manage data and resources and jobs across all these disparate platforms in a seamless unified way with visual tooling. That grand scenario, the virtualization layer is not there yet in any standard way across the big data market. It will evolve, it may take 5-10 years to evolve but it will evolve.

So, that’s the concern that can dampen some of the enthusiasm for Big Data Analytics.

About-

You can read more about Jim at http://www.linkedin.com/pub/james-kobielus/6/ab2/8b0 or

follow him on Twitter at http://twitter.com/jameskobielus

You can read more about IBM Big Data at http://www-01.ibm.com/software/data/bigdata/

Interview Alvaro Tejada Galindo, SAP Labs Montreal, Using SAP Hana with #Rstats

Here is a brief interview with Alvaro Tejada Galindo aka Blag who is a developer working with SAP Hana and R at SAP Labs, Montreal. SAP Hana is SAP’s latest offering in BI , it’s also a database and a computing environment , and using R and HANA together on the cloud can give major productivity gains in terms of both speed and analytical ability, as per preliminary use cases.

Ajay- Describe how you got involved with databases and R language.
Blag-  I used to work as an ABAP Consultant for 11 years, but also been involved with programming since the last 13 years, so I was in touch with SQLServer, Oracle, MySQL and SQLite. When I joined SAP, I heard that SAP HANA was going to use an statistical programming language called “R”. The next day I started my “R” learning.

Ajay- What made the R language a fit for SAP HANA. Did you consider other languages? What is your view on Julia/Python/SPSS/SAS/Matlab languages

Blag- I think “R” is a must for SAP HANA. As the fastest database in the market, we needed a language that could help us shape the data in the best possible way. “R” filled that purpose very well. Right now, “R” is not the only language as “L” can be used as well (http://wiki.tcl.tk/17068) …not forgetting “SQLScript” which is our own version of SQL (http://goo.gl/x3bwh) . I have to admit that I tried Julia, but couldn’t manage to make it work. Regarding Python, it’s an interesting question as I’m going to blog about Python and SAP HANA soon. About Matlab, SPSS and SAS I haven’t used them, so I got nothing to say there.

Ajay- What is your view on some of the limitations of R that can be overcome with using it with SAP HANA.

Blag-  I think mostly the ability of SAP HANA to work with big data. Again, SAP HANA and “R” can work very nicely together and achieve things that weren’t possible before.

Ajay-  Have you considered other vendors of R including working with RStudio, Revolution Analytics, and even Oracle R Enterprise.

Blag-  I’m not really part of the SAP HANA or the R groups inside SAP, so I can’t really comment on that. I can only say that I use RStudio every time I need to do something with R. Regarding Oracle…I don’t think so…but they can use any of our products whenever they want.

Ajay- Do you have a case study on an actual usage of R with SAP HANA that led to great results.

Blag-   Right now the use of “R” and SAP HANA is very preliminary, I don’t think many people has start working on it…but as an example that it works, you can check this awesome blog entry from my friend Jitender Aswani “Big Data, R and HANA: Analyze 200 Million Data Points and Later Visualize Using Google Maps “ (http://allthingsr.blogspot.com/#!/2012/04/big-data-r-and-hana-analyze-200-million.html)

Ajay- Does your group in SAP plan to give to the R ecosystem by attending conferences like UseR 2012, sponsoring meets, or package development etc

Blag- My group is in charge of everything developers, so sure, we’re planning to get more in touch with R developers and their ecosystem. Not sure how we’re going to deal with it, but at least I’m going to get myself involved in the Montreal R Group.

 

About-

http://scn.sap.com/people/alvaro.tejadagalindo3

Name: Alvaro Tejada Galindo
Email: a.tejada.galindo@sap.com
Profession: Development
Company: SAP Canada Labs-Montreal
Town/City: Montreal
Country: Canada
Instant Messaging Type: Twitter
Instant Messaging ID: Blag
Personal URL: http://blagrants.blogspot.com
Professional Blog URL: http://www.sdn.sap.com/irj/scn/weblogs?blog=/pub/u/252210910
My Relation to SAP: employee
Short Bio: Development Expert for the Technology Innovation and Developer Experience team.Used to be an ABAP Consultant for the last 11 years. Addicted to programming since 1997.

http://www.sap.com/solutions/technology/in-memory-computing-platform/hana/overview/index.epx

and from

http://en.wikipedia.org/wiki/SAP_HANA

SAP HANA is SAP AG’s implementation of in-memory database technology. There are four components within the software group:[1]

  • SAP HANA DB (or HANA DB) refers to the database technology itself,
  • SAP HANA Studio refers to the suite of tools provided by SAP for modeling,
  • SAP HANA Appliance refers to HANA DB as delivered on partner certified hardware (see below) as anappliance. It also includes the modeling tools from HANA Studio as well replication and data transformation tools to move data into HANA DB,[2]
  • SAP HANA Application Cloud refers to the cloud based infrastructure for delivery of applications (typically existing SAP applications rewritten to run on HANA).

R is integrated in HANA DB via TCP/IP. HANA uses SQL-SHM, a shared memory-based data exchange to incorporate R’s vertical data structure. HANA also introduces R scripts equivalent to native database operations like join or aggregation.[20] HANA developers can write R scripts in SQL and the types are automatically converted in HANA. R scripts can be invoked with HANA tables as both input and output in the SQLScript. R environments need to be deployed to use R within SQLScript

More blog posts on using SAP and R together

Dealing with R and HANA

http://scn.sap.com/community/in-memory-business-data-management/blog/2011/11/28/dealing-with-r-and-hana
R meets HANA

http://scn.sap.com/community/in-memory-business-data-management/blog/2012/01/29/r-meets-hana

HANA meets R

http://scn.sap.com/community/in-memory-business-data-management/blog/2012/01/26/hana-meets-r
When SAP HANA met R – First kiss

http://scn.sap.com/community/developer-center/hana/blog/2012/05/21/when-sap-hana-met-r–first-kiss

 

Using RODBC with SAP HANA DB-

SAP HANA: My experiences on using SAP HANA with R

http://scn.sap.com/community/in-memory-business-data-management/blog/2012/02/21/sap-hana-my-experiences-on-using-sap-hana-with-r

and of course the blog that started it all-

Jitender Aswani’s http://allthingsr.blogspot.in/

 

 

Analytics 2012 Conference

A nice conference from the grand old institution of Analytics,  SAS  Institute’s annual analytic pow-wow.

I especially like some of the trainings- and wonder if they could be stored as e-learning modules for students/academics to review

in SAS’s extensive and generous Online Education Program.

Sunday Morning Workshop

SAS Sentiment Analysis Studio: Introduction to Building Models

This course provides an introduction to SAS Sentiment Analysis Studio. It is designed for system designers, developers, analytical consultants and managers who want to understand techniques and approaches for identifying sentiment in textual documents.
View outline
Sunday, Oct. 7, 8:30a.m.-12p.m. – $250

Sunday Afternoon Workshops

Business Analytics Consulting Workshops

This workshop is designed for the analyst, statistician, or executive who wants to discuss best-practice approaches to solving specific business problems, in the context of analytics. The two-hour workshop will be customized to discuss your specific analytical needs and will be designed as a one-on-one session for you, including up to five individuals within your company sharing your analytical goal. This workshop is specifically geared for an expert tasked with solving a critical business problem who needs consultation for developing the analytical approach required. The workshop can be customized to meet your needs, from a deep-dive into modeling methods to a strategic plan for analytic initiatives. In addition to the two hours at the conference location, this workshop includes some advanced consulting time over the phone, making it a valuable investment at a bargain price.
View outline
Sunday, Oct. 7; 1-3 p.m. or 3:30-5:30 p.m. – $200

Demand-Driven Forecasting: Sensing Demand Signals, Shaping and Predicting Demand

This half-day lecture teaches students how to integrate demand-driven forecasting into the consensus forecasting process and how to make the current demand forecasting process more demand-driven.
View outline
Sunday, Oct. 7; 1-5 p.m.

Forecast Value Added Analysis

Forecast Value Added (FVA) is the change in a forecasting performance metric (such as MAPE or bias) that can be attributed to a particular step or participant in the forecasting process. FVA analysis is used to identify those process activities that are failing to make the forecast any better (or might even be making it worse). This course provides step-by-step guidelines for conducting FVA analysis – to identify and eliminate the waste, inefficiency, and worst practices from your forecasting process. The result can be better forecasts, with fewer resources and less management time spent on forecasting.
View outline
Sunday, Oct. 7; 1-5 p.m.

SAS Enterprise Content Categorization: An Introduction

This course gives an introduction to methods of unstructured data analysis, document classification and document content identification. The course also uses examples as the basis for constructing parse expressions and resulting entities.
View outline
Sunday, Oct. 7; 1-5 p.m.

 

 
You can see more on this yourself at -

http://www.sas.com/events/analytics/us/

 

 

 

 

 

 

 

 

 

 

 

Follow

Get every new post delivered to your Inbox.

Join 790 other followers