Home » Posts tagged 'Microsoft'

Tag Archives: Microsoft

Hackers or Criminals

In response to the most excellent writer Nick Bilton of NY Times and his splendid though cautious article here

Please consider these points

  •  jail breaking phones was once illegal , then became legal, and now is questionable again. Rooting your Android tablet is now frowned upon. The question is how do you teach the next generation of hackers to explore hardware and software and yet respect laws in their own self interest. Exploring means pushing the boundaries of what can be done and what can not be done. Inter racial marriage was illegal too, once.
  • what damage have hackers caused to society in past 5 years  (lost revenues in Digital content) versus what benefits have they brought about ( Arab Spring catalyst)
  • Consider the past history of hackers who turned entrepreneurs because they didn’t go to jail and were mentored into diverting their energy to startups that created jobs.

No hackers, bam, no Apple, no Microsoft, no Google, and yes no Facebook because the founders would be too busy in a court of law.Probably not much NASA, DARPA or NSA given that almost everyone tests the limits of exploration in young age.

  • Consider the historic legality of protests as done by Gandhi, Martin Luther King , and the legal treatment of hacker activists recently. Civic rights in 60s and cyber rights in the 2010s. Do they have something in common?
  • Is law enforcement adequately trained to understand hacking , and what steps are being done for enhancing cyber law training and jurisprudence. I don’t think the cyber law enforcement is adequately manned with resources. When law enforcement is denied resources, it takes short cuts and questionable tactics including intimidation and making examples of people.

My father , a decorated police officer , always said that , if you are not a part of the solution, you are part of the problem.As a technical writer , I sometimes know how to solve technical problems but these laws create fear in the minds of future problem solvers.

  • Who is a hacker. Who is a criminal .Is a hacker ~= a criminal or Is a hacker == a criminal ?

Lets get some common sense back in the game before we turn more kids int rebels without a cause, or without a case.

(continued from the series)

 

Data Frame in Python

Exploring some Python Packages and R packages to move /work with both Python and R without melting your brain or exceeding your project deadline

—————————————

If you liked the data.frame structure in R, you have some way to work with them at a faster processing speed in Python.

Here are three packages that enable you to do so-

(1) pydataframe http://code.google.com/p/pydataframe/

An implemention of an almost R like DataFrame object. (install via Pypi/Pip: “pip install pydataframe”)

Usage:

        u = DataFrame( { "Field1": [1, 2, 3],
                        "Field2": ['abc', 'def', 'hgi']},
                        optional:
                         ['Field1', 'Field2']
                         ["rowOne", "rowTwo", "thirdRow"])

A DataFrame is basically a table with rows and columns.

Columns are named, rows are numbered (but can be named) and can be easily selected and calculated upon. Internally, columns are stored as 1d numpy arrays. If you set row names, they’re converted into a dictionary for fast access. There is a rich subselection/slicing API, see help(DataFrame.get_item) (it also works for setting values). Please note that any slice get’s you another DataFrame, to access individual entries use get_row(), get_column(), get_value().

DataFrames also understand basic arithmetic and you can either add (multiply,…) a constant value, or another DataFrame of the same size / with the same column names, like this:

#multiply every value in ColumnA that is smaller than 5 by 6.
my_df[my_df[:,'ColumnA'] < 5, 'ColumnA'] *= 6

#you always need to specify both row and column selectors, use : to mean everything
my_df[:, 'ColumnB'] = my_df[:,'ColumnA'] + my_df[:, 'ColumnC']

#let's take every row that starts with Shu in ColumnA and replace it with a new list (comprehension)
select = my_df.where(lambda row: row['ColumnA'].startswith('Shu'))
my_df[select, 'ColumnA'] = [row['ColumnA'].replace('Shu', 'Sha') for row in my_df[select,:].iter_rows()]

Dataframes talk directly to R via rpy2 (rpy2 is not a prerequiste for the library!)

 

(2) pandas http://pandas.pydata.org/

Library Highlights

  • A fast and efficient DataFrame object for data manipulation with integrated indexing;
  • Tools for reading and writing data between in-memory data structures and different formats: CSV and text files, Microsoft Excel, SQL databases, and the fast HDF5 format;
  • Intelligent data alignment and integrated handling of missing data: gain automatic label-based alignment in computations and easily manipulate messy data into an orderly form;
  • Flexible reshaping and pivoting of data sets;
  • Intelligent label-based slicing, fancy indexing, and subsetting of large data sets;
  • Columns can be inserted and deleted from data structures for size mutability;
  • Aggregating or transforming data with a powerful group by engine allowing split-apply-combine operations on data sets;
  • High performance merging and joining of data sets;
  • Hierarchical axis indexing provides an intuitive way of working with high-dimensional data in a lower-dimensional data structure;
  • Time series-functionality: date range generation and frequency conversion, moving window statistics, moving window linear regressions, date shifting and lagging. Even create domain-specific time offsets and join time series without losing data;
  • The library has been ruthlessly optimized for performance, with critical code paths compiled to C;
  • Python with pandas is in use in a wide variety of academic and commercial domains, including Finance, Neuroscience, Economics, Statistics, Advertising, Web Analytics, and more.

Why not R?

First of all, we love open source R! It is the most widely-used open source environment for statistical modeling and graphics, and it provided some early inspiration for pandas features. R users will be pleased to find this library adopts some of the best concepts of R, like the foundational DataFrame (one user familiar with R has described pandas as “R data.frame on steroids”). But pandas also seeks to solve some frustrations common to R users:

  • R has barebones data alignment and indexing functionality, leaving much work to the user. pandas makes it easy and intuitive to work with messy, irregularly indexed data, like time series data. pandas also provides rich tools, like hierarchical indexing, not found in R;
  • R is not well-suited to general purpose programming and system development. pandas enables you to do large-scale data processing seamlessly when developing your production applications;
  • Hybrid systems connecting R to a low-productivity systems language like Java, C++, or C# suffer from significantly reduced agility and maintainability, and you’re still stuck developing the system components in a low-productivity language;
  • The “copyleft” GPL license of R can create concerns for commercial software vendors who want to distribute R with their software under another license. Python and pandas use more permissive licenses.

(3) datamatrix http://pypi.python.org/pypi/datamatrix/0.8

datamatrix 0.8

A Pythonic implementation of R’s data.frame structure.

Latest Version: 0.9

This module allows access to comma- or other delimiter separated files as if they were tables, using a dictionary-like syntax. DataMatrix objects can be manipulated, rows and columns added and removed, or even transposed

—————————————————————–

Modeling in Python

(more…)

Can Microsoft buy Facebook

At $39.23 Billion , Facebook is now cheaper than what Steve Ballmer was prepared to pay for Yahoo (when Yahoo CEO Jerry Yang famously turned him down). Can Microsoft buy Facebook? or Can Apple buy Facebook?

Both would be okay from an anti trust perspective- and both have the cash. Note you need only to buy 51% of shares for controlling and Mark Zuckerberg seems a bit down (never mind Sean Parker’s voting arrangement).

Can Google plunk 20% of FB for 8 billion – less than they paid for Motorola, so they can sell Ads there while FB concentrates on thee social aspects.

FB has innovated with good UI, apps, cassandra,the like button, the FB connect network, and of course socially targeted ads. I dont think it’s stock price deserves to be dog with fleas.

See http://finance.yahoo.com/q?s=FB

Where is a good leveraged buy out (LBO) or hedge fund when you need one?

But, Seriously.

 

 

 

 

Hacker Alert- Darpa project 10$ K for summer

If you bleed red,white and blue and know some geo-spatial analysis ,social network analysis and some supervised and unsupervised learning (and unlearning)- here is a chance for you to put your skills for an awesome project

 

from wired-

http://www.wired.com/dangerroom/2012/07/hackathon-guinea-pig/

 

For this challenge, Darpa will lodge a selected six to eight teams at George Mason University and provide them with an initial $10,000 for equipment and access to unclassified data sets including “ground-level video of human activity in both urban and rural environments; high-resolution wide-area LiDAR of urban and mountainous terrain, wide-area airborne full motion video; and unstructured amateur photos and videos, such as would be taken from an adversary’s cell phone.” However, participants are encouraged to use any open sourced, legal data sets they want. (In the hackathon spirit, we would encourage the consumption of massive quantities of pizza and Red Bull, too.)

 

DARPA Innovation House Project

Home | Data Access | Awards | Team Composition | Logisitics | Deliverables | Proposals | Evaluation Criteria | FAQ

PROPOSAL SUBMISSION

Proposals must be one to three pages. Team resumes of any length must be attached and do not count against the page limit. Proposals must have 1-inch margins, use a font size of at least 11, and be delivered in Microsoft Word or Adobe PDF format.

Proposals must be emailed to InnovationHouse@c4i.gmu.edu by 4:00PM ET on Tuesday, July 31, 2012.

Proposals must have a Title and contain at least the following sections with the following contents.

  1. Team Members

Each team member must be listed with name, email and phone.
The Lead Developer should be indicated.
The statement “All team members are proposed as Key Personnel.” must be included.

  1. Capability Description

The description should clearly explain what capability the software is designed to provide the user, how it is proposed to work, and what data it will process.

In addition, a clear argument should be made as to why it is a novel approach that is not incremental to existing methods in the field.

  1. Proposed Phase 1 Demonstration

This section should clearly explain what will be demonstrated at the end of Session I. The description should be expressive, and as concrete as possible about the nature of the designs and software the team intends to produce in Session I.

  1. Proposed Phase 2 Demonstration

This section should clearly explain how the final software capability will be demonstrated as quantitatively as possible (for example, positing the amount of data that will be processed during the demonstration), how much time that will take, and the nature of the results the processing aims to achieve.

In addition, the following sections are optional.

  1. Technical Approach

The technical approach section amplifies the Capability Description, explaining proposed algorithms, coding practices, architectural designs and/or other technical details.

  1. Team Qualifications

Team qualifications should be included if the team?s experience base does not make it obvious that it has the potential to do this level of software development. In that case, this section should make a credible argument as to why the team should be considered to have a reasonable chance of completing its goals, especially under the tight timelines described.

Other sections may be included at the proposers? discretion, provided the proposal does not exceed three pages.

[Top]

 

http://www.darpa.mil/NewsEvents/Releases/2012/07/10.aspx

 

 

 

Revolution R Enterprise 6.0 launched!

Just got the email-more software is good news!

Revolution R Enterprise 6.0 for 32-bit and 64-bit Windows and 64-bit Red Hat Enterprise Linux (RHEL 5.x and RHEL 6.x) features an updated release of the RevoScaleR package that provides fast, scalable data management and data analysis: the same code scales from data frames to local, high-performance .xdf files to data distributed across a Windows HPC Server cluster or IBM Platform Computing LSF cluster.  RevoScaleR also allows distribution of the execution of essentially any R function across cores and nodes, delivering the results back to the user.

Detailed information on what’s new in 6.0 and known issues:
http://www.revolutionanalytics.com/doc/README_RevoEnt_Windows_6.0.0.pdf

and from the manual-lots of function goodies for Big Data

 

  • IBM Platform LSF Cluster support [Linux only]. The new RevoScaleR function, RxLsfCluster, allows you to create a distributed compute context for the Platform LSF workload manager.
  •  Azure Burst support added for Microsoft HPC Server [Windows only]. The new RevoScaleR function, RxAzureBurst, allows you to create a distributed compute context to have computations performed in the cloud using Azure Burst
  • The rxExec function allows distributed execution of essentially any R function across cores and nodes, delivering the results back to the user.
  • functions RxLocalParallel and RxLocalSeq allow you to create compute context objects for local parallel and local sequential computation, respectively.
  • RxForeachDoPar allows you to create a compute context using the currently registered foreach parallel backend (doParallel, doSNOW, doMC, etc.). To execute rxExec calls, simply register the parallel backend as usual, then set your compute context as follows: rxSetComputeContext(RxForeachDoPar())
  • rxSetComputeContext and rxGetComputeContext simplify management of compute contexts.
  • rxGlm, provides a fast, scalable, distributable implementation of generalized linear models. This expands the list of full-featured high performance analytics functions already available: summary statistics (rxSummary), cubes and cross tabs (rxCube,rxCrossTabs), linear models (rxLinMod), covariance and correlation matrices (rxCovCor),
    binomial logistic regression (rxLogit), and k-means clustering (rxKmeans)example: a Tweedie family with 1 million observations and 78 estimated coefficients (categorical data)
    took 17 seconds with rxGlm compared with 377 seconds for glm on a quadcore laptop

     

    and easier working with R’s big brother SAS language

     

    RevoScaleR high-performance analysis functions will now conveniently work directly with a variety of external data sources (delimited and fixed format text files, SAS files, SPSS files, and ODBC data connections). New functions are provided to create data source objects to represent these data sources (RxTextData, RxOdbcData, RxSasData, and RxSpssData), which in turn can be specified for the ‘data’ argument for these RevoScaleR analysis functions: rxHistogramrxSummary, rxCube, rxCrossTabs, rxLinMod, rxCovCor, rxLogit, and rxGlm.


    example, 

    you can analyze a SAS file directly as follows:


    # Create a SAS data source with information about variables and # rows to read in each chunk

    sasDataFile <- file.path(rxGetOption(“sampleDataDir”),”claims.sas7bdat”)
    sasDS <- RxSasData(sasDataFile, stringsAsFactors = TRUE,colClasses = c(RowNum = “integer”),rowsPerRead = 50)

    # Compute and draw a histogram directly from the SAS file
    rxHistogram( ~cost|type, data = sasDS)
    # Compute summary statistics
    rxSummary(~., data = sasDS)
    # Estimate a linear model
    linModObj <- rxLinMod(cost~age + car_age + type, data = sasDS)
    summary(linModObj)
    # Import a subset into a data frame for further inspection
    subData <- rxImport(inData = sasDS, rowSelection = cost > 400,
    varsToKeep = c(“cost”, “age”, “type”))
    subData

 

The installation instructions and instructions for getting started with Revolution R Enterprise & RevoDeployR for Windows: http://www.revolutionanalytics.com/downloads/instructions/windows.php

Facebook Search- The fall of the machines

Increasingly I am beginning to search more and more on Facebook. This is for the following reasons-

1) Facebook is walled off to Google (mostly). While within Facebook , I get both people results and content results (from Bing).

Bing is an okay alternative , though not as fast as Google Instant.

2) Cleaner Web Results When Facebook increases the number of results from 3 top links to say 10 top links, there should be more outbound traffic from FB search to websites.For some reason Google continues to show 14 pages of results… Why? Why not limit to just one page.

3) Better People Search than  Pipl and Google. But not much (or any) image search. This is curious and I am hoping the Instagram results would be added to search results.

4) I am hoping for any company Facebook or Microsoft to challenge Adsense . Adwords already has rivals. Adsense is a de facto monopoly and my experiences in advertising show that content creators can make much more money from a better Adsense (especially ) if Adsense and Adwords do not have a conflict of interest from same advertisers.

Adwords should have been a special case of Adsense for Google.com but it is not.

5) Machine learning can only get you from tau to delta tau. When ad click behavior is inherently dependent on humans who behave mostly on chaotic , or genetic models than linear CPC models. I find FB has an inherent advantage in the quantity and quality of data collected on people behavior rather than click behavior. They are also more aggressive and less apologetic about behavorially targeted  ads.

Additional point- Analytics for Google Analytics is not as rich as analytics from Facebook pages in terms of demographic variables. This can be tested by anyone.

 

Interview Michal Kosinski , Concerto Web Based App using #Rstats

Here is an interview with Michal Kosinski , leader of the team that has created Concerto – a web based application using R. What is Concerto? As per http://www.psychometrics.cam.ac.uk/page/300/concerto-testing-platform.htm

Concerto is a web based, adaptive testing platform for creating and running rich, dynamic tests. It combines the flexibility of HTML presentation with the computing power of the R language, and the safety and performance of the MySQL database. It’s totally free for commercial and academic use, and it’s open source

Ajay-  Describe your career in science from high school to this point. What are the various stats platforms you have trained on- and what do you think about their comparative advantages and disadvantages?  

Michal- I started with maths, but quickly realized that I prefer social sciences – thus after one year, I switched to a psychology major and obtained my MSc in Social Psychology with a specialization in Consumer Behaviour. At that time I was mostly using SPSS – as it was the only statistical package that was taught to students in my department. Also, it was not too bad for small samples and the rather basic analyses I was performing at that time.

 

My more recent research performed during my Mphil course in Psychometrics at Cambridge University followed by my current PhD project in social networks and research work at Microsoft Research, requires significantly more powerful tools. Initially, I tried to squeeze as much as possible from SPSS/PASW by mastering the syntax language. SPSS was all I knew, though I reached its limits pretty quickly and was forced to switch to R. It was a pretty dreary experience at the start, switching from an unwieldy but familiar environment into an unwelcoming command line interface, but I’ve quickly realized how empowering and convenient this tool was.

 

I believe that a course in R should be obligatory for all students that are likely to come close to any data analysis in their careers. It is really empowering – once you got the basics you have the potential to use virtually any method there is, and automate most tasks related to analysing and processing data. It is also free and open-source – so you can use it wherever you work. Finally, it enables you to quickly and seamlessly migrate to other powerful environments such as Matlab, C, or Python.

Ajay- What was the motivation behind building Concerto?

Michal- We deal with a lot of online projects at the Psychometrics Centre – one of them attracted more than 7 million unique participants. We needed a powerful tool that would allow researchers and practitioners to conveniently build and deliver online tests.

Also, our relationships with the website designers and software engineers that worked on developing our tests were rather difficult. We had trouble successfully explaining our needs, each little change was implemented with a delay and at significant cost. Not to mention the difficulties with embedding some more advanced methods (such as adaptive testing) in our tests.

So we created a tool allowing us, psychometricians, to easily develop psychometric tests from scratch an publish them online. And all this without having to hire software developers.

Ajay -Why did you choose R as the background for Concerto? What other languages and platforms did you consider. Apart from Concerto, how else do you utilize R in your center, department and University?

Michal- R was a natural choice as it is open-source, free, and nicely integrates with a server environment. Also, we believe that it is becoming a universal statistical and data processing language in science. We put increasing emphasis on teaching R to our students and we hope that it will replace SPSS/PASW as a default statistical tool for social scientists.

Ajay -What all can Concerto do besides a computer adaptive test?

Michal- We did not plan it initially, but Concerto turned out to be extremely flexible. In a nutshell, it is a web interface to R engine with a built-in MySQL database and easy-to-use developer panel. It can be installed on both Windows and Unix systems and used over the network or locally.

Effectively, it can be used to build any kind of web application that requires a powerful and quickly deployable statistical engine. For instance, I envision an easy to use website (that could look a bit like SPSS) allowing students to analyse their data using a web browser alone (learning the underlying R code simultaneously). Also, the authors of R libraries (or anyone else) could use Concerto to build user-friendly web interfaces to their methods.

Finally, Concerto can be conveniently used to build simple non-adaptive tests and questionnaires. It might seem to be slightly less intuitive at first than popular questionnaire services (such us my favourite Survey Monkey), but has virtually unlimited flexibility when it comes to item format, test flow, feedback options, etc. Also, it’s free.

Ajay- How do you see the cloud computing paradigm growing? Do you think browser based computation is here to stay?

Michal - I believe that cloud infrastructure is the future. Dynamically sharing computational and network resources between online service providers has a great competitive advantage over traditional strategies to deal with network infrastructure. I am sure the security concerns will be resolved soon, finishing the transformation of the network infrastructure as we know it. On the other hand, however, I do not see a reason why client-side (or browser) processing of the information should cease to exist – I rather think that the border between the cloud and personal or local computer will continually dissolve.

About

Michal Kosinski is Director of Operations for The Psychometrics Centre and Leader of the e-Psychometrics Unit. He is also a research advisor to the Online Services and Advertising group at the Microsoft Research Cambridge, and a visiting lecturer at the Department of Mathematics in the University of Namur, Belgium. You can read more about him at http://www.michalkosinski.com/

You can read more about Concerto at http://code.google.com/p/concerto-platform/ and http://www.psychometrics.cam.ac.uk/page/300/concerto-testing-platform.htm

Follow

Get every new post delivered to your Inbox.

Join 839 other followers