6 weeks Data Scientist Online Courses #rstats

Hosting a 6 weekend live online certification course on Business Analytics with R starting June 1 at Edureka.Check www.edureka.in/r-for-analytics for more details. Course has been decided to ensure more open data science than current expensive offerings that are tech rather than business oriented but more support and customization than a MOOC This is because many business customers don’t care if it is lapply or ddapply, or command line or GUI, as longĀ  as they get good ROI on time and money spent in shifting to R from other analytics software.

Screenshot from 2013-05-28 07:16:41



Visual Guides to CRISP-DM ,KDD and SEMMA

UPDATED- Here are three great examples of a visualization making a process easy to understand. Please click on the images to read them clearly.

1) It visualizes CRISP-DM and is made by Nicole Leaper (http://exde.wordpress.com/2009/03/13/a-visual-guide-to-crisp-dm-methodology/)


2) KDD -Knowledge Discovery in Databases -visualization by Fayyad whom I have interviewed here atĀ http://www.decisionstats.com/interview-dr-usama-fayyad-founder-open-insights-llc/

and work By Gregory Piatetsky Shapiro interviewed by this website here



3) I am also attaching a visual representation of SEMMA from http://www.dataprix.net/en/blogs/respinosamilla/theory-data-mining



Book Review- Predictive Analytics: The Power to Predict Who Will Click, Buy, Lie, or Die

I recently read a review copy of Dr Eric Siegel’s new book Predictive Analytics: The Power to Predict Who Will Click, Buy, Lie, or Die.

(Disclaimer-I have interviewed Eric here in September 2009, and we have been in touch over the years as his Predictive Analytics Conference became a blog partner and then a sponsor here at Decisionstats.com PAWCON also took off, becoming the biggest brand in independent analytics conferences)

So it was with a slight note of optimism that I opened this book, and it has so far exceeded my expectations. This is a very lucidly writtern, well explained book that can help people at all levels for analytics. There is a wealth of information here in a wide variety of business domains, and the beautifully designed book also has great tables, examples, and quotes, cartoons to make a very readable case for predictive analytics. Of course, Eric has some views, he loves ensemble modeling, conversion uplift models, privacy concerns, and his background in academics help explain even technical things very elaborately and in an interesting manner.

And at $14,6 it is quite a steal from Amazon. So buy a copy and read it. I would recommend it for helping build a case for predictive analytics , evangelizing to clients, and even to students in grad school programs. This is how analytics books should be , easy to read, and lucid to remember and practical to execute!