Home » Posts tagged 'business analytics'

Tag Archives: business analytics

6 weeks Data Scientist Online Courses #rstats

Hosting a 6 weekend live online certification course on Business Analytics with R starting June 1 at Edureka.Check www.edureka.in/r-for-analytics for more details. Course has been decided to ensure more open data science than current expensive offerings that are tech rather than business oriented but more support and customization than a MOOC This is because many business customers don’t care if it is lapply or ddapply, or command line or GUI, as long  as they get good ROI on time and money spent in shifting to R from other analytics software.

Screenshot from 2013-05-28 07:16:41

 

 

The second meetup for R New Delhi Users

The R Users of New Delhi met for the second time on Dec 15, 2012. We meet on the third Saturday of every month.

12121

We talked on epidemiology using epi calc package  ( we have 1 doctor and 1 bio statistician) , and Cloud Computing ( we have two IT guys) and Business Analytics. We also discussed the GUI , R Commander , Rattle, and Deducer for beginners and people transitioning to R from other analytics software. We also discussed the R for SAS and SPSS Users books, and R for Data Mining Book. The free book for R for Epidemiology ( http://cran.r-project.org/doc/contrib/Epicalc_Book.pdf ) was mentioned . Not bad for 1 hour.

We are currently unfunded and unsponsored , I hope to get some sponsors to give away R books to encourage users and group members (excluding my own). The only catch to join this meetup group, you either need to attend (and be local) or present something ( if you are not in Delhi)2

I have been trying to get this group to go from Vector to Matrix to get a bigger sponsorship from Revolution , but I am constrained by meeting in a public cafe. That is due to change since we managed to get one sponsor for meeting place in Noida ( a Business School batchmate who owns his office)

http://www.revolutionanalytics.com/news-events/r-user-group/

Deadlines for applications are:

  • March 31, 2013 for Matrix and Array level groups.
  • September 30, 2013 for Vector level groups.

2013 Sponsorship Levels

The size of the annual grant depends on the size of your group.

Level For groups that are:  Requirements Annual Grant ($USD)
Vector Just getting started A group name, group webpage, and a focus on R. (Here are some tips on starting up a new R user group.) $100
Matrix Smaller but established 3 meetings in last 6 months with 30 attendees or more.  $500
Array Larger and groups  3 meetings in last 6 months with 60 attendees or more. $1000

 

BigML creates a marketplace for Predictive Models

BigML has created a marketplace for selling Datasets and Models. This is a first (?) as the closest market for Predictive Analytics till now was Rapid Miner’s marketplace for extensions (at http://rapidupdate.de:8180/UpdateServer/faces/index.xhtml)

From http://blog.bigml.com/2012/10/25/worlds-first-predictive-marketplace/

SELL YOUR DATA

You can make your Dataset public. Mind you: the Datasets we are talking about are BigML’s fancy histograms. This means that other BigML users can look at your Dataset details and create new models based on this Dataset. But they can not see individual records or columns or use it beyond the statistical summaries of the Dataset. Your Source will remain private, so there is no possibility of anyone accessing the raw data.

SELL YOUR MODEL

Now, once you have created a great model, you can share it with the rest of the world. For free or at any price you set.Predictions are paid for in BigML Prediction Credits. The minimum price is ‘Free’ and the maximum price indicated is 100 credits.

White Box Models

Clicking on the white open lock will open up your model to the rest of the world. Anyone can now buy your model, explore it, use it to make predictions

Black Box Models

If you choose the black box setting (the black open lock icon), other BigML users will NOT be able to view or clone your model, but they will be able to use it to make predictions.

——

DOWNLOAD YOUR MODEL

BigML.com have added downloads to our models. Simply choose the format you want and you can copy/paste the code or text. There is a range of formats that they offer currently: JSON PML, PMML, Python, Ruby, Objective-C, Java, the rules of the decision tree in plain text and a Summary overview of your model. Around the corner are MS Excel downloads and R (of course!).

PUBLICIZE YOUR MODEL

There’s also an ‘embed’ function, so now you can embed the little poster of your model in your blog post or website, so it is easy to share it in your own environment.

————————————————————————————————————————–

It is nice to see Models and Data getting the APPY treatment and hopefully, it will encourage other vendors Iike Google Prediction API etc to further spend thought and effort to reward data mining individuals directly without going through corporate intermediaries while ensuring intellectual property safeguards .

An R package market for enterprises? for Python libraries? JMP addins? A market for SAS Macros- who knows what the future shall hold. But overall, this is a very positive step by the BigML.com team. The App marketplace has helped revolutionize mobile and desktop computing and hopefully it will do the same for Business Analytics.

 

Analytics 2012 Conference

from http://www.sas.com/events/analytics/us/index.html

Analytics 2012 Conference

SAS and more than 1,000 analytics experts gather at

Caesars Palace
Caesars Palace

Analytics 2012 Conference Details

Pre-Conference Workshops – Oct 7
Conference – Oct 8-9
Post-Conference Training – Oct 10-12
Caesars Palace, Las Vegas

Keynote Speakers

The following are confirmed keynote speakers for Analytics 2012. Jim Goodnight Since he co-founded SAS in 1976, Jim Goodnight has served as the company’s Chief Executive Officer.

William Hakes Dr. William Hakes is the CEO and co-founder of Link Analytics, an analytical technology company focused on mobile, energy and government verticals.

Tim Rey Tim Rey  has written over 100 internal papers, published 21 external papers, and delivered numerous keynote presentations and technical talks at various quantitative methods forums. Recently he has co-chaired both forecasting and data mining conferences. He is currently in the process of co-writing a book, Applied Data Mining for Forecasting.

http://www.sas.com/events/analytics/us/train.html

Pre-Conference

Plan to come to Analytics 2012 a day early and participate in one of the pre-conference workshops or take a SAS Certification exam. Prices for all of the preconference workshops, except for SAS Sentiment Analysis Studio: Introduction to Building Models and the Business Analytics Consulting Workshops, are included in the conference package pricing. You will be prompted to select your pre-conference training options when you register.

Sunday Morning Workshop

SAS Sentiment Analysis Studio: Introduction to Building Models

This course provides an introduction to SAS Sentiment Analysis Studio. It is designed for system designers, developers, analytical consultants and managers who want to understand techniques and approaches for identifying sentiment in textual documents.
View outline
Sunday, Oct. 7, 8:30a.m.-12p.m. – $250

Sunday Afternoon Workshops

Business Analytics Consulting Workshops

This workshop is designed for the analyst, statistician, or executive who wants to discuss best-practice approaches to solving specific business problems, in the context of analytics. The two-hour workshop will be customized to discuss your specific analytical needs and will be designed as a one-on-one session for you, including up to five individuals within your company sharing your analytical goal. This workshop is specifically geared for an expert tasked with solving a critical business problem who needs consultation for developing the analytical approach required. The workshop can be customized to meet your needs, from a deep-dive into modeling methods to a strategic plan for analytic initiatives. In addition to the two hours at the conference location, this workshop includes some advanced consulting time over the phone, making it a valuable investment at a bargain price.
View outline
Sunday, Oct. 7; 1-3 p.m. or 3:30-5:30 p.m. – $200

Demand-Driven Forecasting: Sensing Demand Signals, Shaping and Predicting Demand

This half-day lecture teaches students how to integrate demand-driven forecasting into the consensus forecasting process and how to make the current demand forecasting process more demand-driven.
View outline
Sunday, Oct. 7; 1-5 p.m.

Forecast Value Added Analysis

Forecast Value Added (FVA) is the change in a forecasting performance metric (such as MAPE or bias) that can be attributed to a particular step or participant in the forecasting process. FVA analysis is used to identify those process activities that are failing to make the forecast any better (or might even be making it worse). This course provides step-by-step guidelines for conducting FVA analysis – to identify and eliminate the waste, inefficiency, and worst practices from your forecasting process. The result can be better forecasts, with fewer resources and less management time spent on forecasting.
View outline
Sunday, Oct. 7; 1-5 p.m.

SAS Enterprise Content Categorization: An Introduction

This course gives an introduction to methods of unstructured data analysis, document classification and document content identification. The course also uses examples as the basis for constructing parse expressions and resulting entities.
View outline
Sunday, Oct. 7; 1-5 p.m.

Introduction to Data Mining and SAS Enterprise Miner

This course serves as an introduction to data mining and SAS Enterprise Miner for Desktop software. It is designed for data analysts and qualitative experts as well as those with less of a technical background who want a general understanding of data mining.
View outline
Sunday, Oct. 7, 1-5 p.m.

Modeling Trend, Cycles, and Seasonality in Time Series Data Using PROC UCM

This half-day lecture teaches students how to model, interpret, and predict time series data using UCMs. The UCM procedure analyzes and forecasts equally spaced univariate time series data using the unobserved components models (UCM). This course is designed for business analysts who want to analyze time series data to uncover patterns such as trend, seasonal effects, and cycles using the latest techniques.
View outline
Sunday, Oct. 7, 1-5 p.m.

SAS Rapid Predictive Modeler

This seminar will provide a brief introduction to the use of SAS Enterprise Guide for graphical and data analysis. However, the focus will be on using SAS Enterprise Guide and SAS Enterprise Miner along with the Rapid Predictive Modeling component to build predictive models. Predictive modeling will be introduced using the SEMMA process developed with the introduction of SAS Enterprise Miner. Several examples will be used to illustrate the use of the Rapid Predictive Modeling component, and interpretations of the model results will be provided.
View outline
Sunday, Oct. 7, 1-5 p.m

Interview Rob J Hyndman Forecasting Expert #rstats

Here is an interview with Prof Rob J Hyndman who has created many time series forecasting methods and authored books as well as R packages on the same.

Ajay -Describe your journey from being a student of science to a Professor. What were some key turning points along that journey?
 
Rob- I started a science honours degree at the University of Melbourne in 1985. By the end of 1985 I found myself simultaneously working as a statistical consultant (having completed all of one year of statistics courses!). For the next three years I studied mathematics, statistics and computer science at university, and tried to learn whatever I needed to in order to help my growing group of clients. Often we would cover things in classes that I’d already taught myself through my consulting work. That really set the trend for the rest of my career. I’ve always been an academic on the one hand, and a statistical consultant on the other. The consulting work has led me to learn a lot of things that I would not otherwise have come across, and has also encouraged me to focus on research problems that are of direct relevance to the clients I work with.
I never set out to be an academic. In fact, I thought that I would get a job in the business world as soon as I finished my degree. But once I completed the degree, I was offered a position as a statistical consultant within the University of Melbourne, helping researchers in various disciplines and doing some commercial work. After a year, I was getting bored doing only consulting, and I thought it would be interesting to do a PhD. I was lucky enough to be offered a generous scholarship which meant I was paid more to study than to continue working.
Again, I thought that I would probably go and get a job in the business world after I finished my PhD. But I finished it early and my scholarship was going to be cut off once I submitted my thesis. So instead, I offered to teach classes for free at the university and delayed submitting my thesis until the scholarship period ran out. That turned out to be a smart move because the university saw that I was a good teacher, and offered me a lecturing position starting immediately I submitted my thesis. So I sort of fell into an academic career.
I’ve kept up the consulting work part-time because it is interesting, and it gives me a little extra money. But I’ve also stayed an academic because I love the freedom to be able to work on anything that takes my fancy.
Ajay- Describe your upcoming book on Forecasting.
 
Rob- My first textbook on forecasting (with Makridakis and Wheelwright) was written a few years after I finished my PhD. It has been very popular, but it costs a lot of money (about $140 on Amazon). I estimate that I get about $1 for every book sold. The rest goes to the publisher (Wiley) and all they do is print, market and distribute it. I even typeset the whole thing myself and they print directly from the files I provided. It is now about 15 years since the book was written and it badly needs updating. I had a choice of writing a new edition with Wiley or doing something completely new. I decided to do a new one, largely because I didn’t want a publisher to make a lot of money out of students using my hard work.
It seems to me that students try to avoid buying textbooks and will search around looking for suitable online material instead. Often the online material is of very low quality and contains many errors.
As I wasn’t making much money on my textbook, and the facilities now exist to make online publishing very easy, I decided to try a publishing experiment. So my new textbook will be online and completely free. So far it is about 2/3 completed and is available at http://otexts.com/fpp/. I am hoping that my co-author (George Athanasopoulos) and I will finish it off before the end of 2012.
The book is intended to provide a comprehensive introduction to forecasting methods. We don’t attempt to discuss the theory much, but provide enough information for people to use the methods in practice. It is tied to the forecast package in R, and we provide code to show how to use the various forecasting methods.
The idea of online textbooks makes a lot of sense. They are continuously updated so if we find a mistake we fix it immediately. Also, we can add new sections, or update parts of the book, as required rather than waiting for a new edition to come out. We can also add richer content including video, dynamic graphics, etc.
For readers that want a print edition, we will be aiming to produce a print version of the book every year (available via Amazon).
I like the idea so much I’m trying to set up a new publishing platform (otexts.com) to enable other authors to do the same sort of thing. It is taking longer than I would like to make that happen, but probably next year we should have something ready for other authors to use.
Ajay- How can we make textbooks cheaper for students as well as compensate authors fairly
 
Rob- Well free is definitely cheaper, and there are a few businesses trying to make free online textbooks a reality. Apart from my own efforts, http://www.flatworldknowledge.com/ is producing a lot of free textbooks. And textbookrevolution.org is another great resource.
With otexts.com, we will compensate authors in two ways. First, the print versions of a book will be sold (although at a vastly cheaper rate than other commercial publishers). The royalties on print sales will be split 50/50 with the authors. Second, we plan to have some features of each book available for subscription only (e.g., solutions to exercises, some multimedia content, etc.). Again, the subscription fees will be split 50/50 with the authors.
Ajay- Suppose a person who used to use forecasting software from another company decides to switch to R. How easy and lucid do you think the current documentation on R website for business analytics practitioners such as these – in the corporate world.
 
Rob- The documentation on the R website is not very good for newcomers, but there are a lot of other R resources now available. One of the best introductions is Matloff’s “The Art of R Programming”. Provided someone has done some programming before (e.g., VBA, python or java), learning R is a breeze. The people who have trouble are those who have only ever used menu interfaces such as Excel. Then they are not only learning R, but learning to think about computing in a different way from what they are used to, and that can be tricky. However, it is well worth it. Once you know how to code, you can do so much more.  I wish some basic programming was part of every business and statistics degree.
If you are working in a particular area, then it is often best to find a book that uses R in that discipline. For example, if you want to do forecasting, you can use my book (otexts.com/fpp/). Or if you are using R for data visualization, get hold of Hadley Wickham’s ggplot2 book.
Ajay- In a long and storied career- What is the best forecast you ever made ? and the worst?
 
 Rob- Actually, my best work is not so much in making forecasts as in developing new forecasting methodology. I’m very proud of my forecasting models for electricity demand which are now used for all long-term planning of electricity capacity in Australia (see  http://robjhyndman.com/papers/peak-electricity-demand/  for the details). Also, my methods for population forecasting (http://robjhyndman.com/papers/stochastic-population-forecasts/ ) are pretty good (in my opinion!). These methods are now used by some national governments (but not Australia!) for their official population forecasts.
Of course, I’ve made some bad forecasts, but usually when I’ve tried to do more than is reasonable given the available data. One of my earliest consulting jobs involved forecasting the sales for a large car manufacturer. They wanted forecasts for the next fifteen years using less than ten years of historical data. I should have refused as it is unreasonable to forecast that far ahead using so little data. But I was young and naive and wanted the work. So I did the forecasts, and they were clearly outside the company’s (reasonable) expectations, and they then refused to pay me. Lesson learned. It’s better to refuse work than do it poorly.

Probably the biggest impact I’ve had is in helping the Australian government forecast the national health budget. In 2001 and 2002, they had underestimated health expenditure by nearly $1 billion in each year which is a lot of money to have to find, even for a national government. I was invited to assist them in developing a new forecasting method, which I did. The new method has forecast errors of the order of plus or minus $50 million which is much more manageable. The method I developed for them was the basis of the ETS models discussed in my 2008 book on exponential smoothing (www.exponentialsmoothing.net)

. And now anyone can use the method with the ets() function in the forecast package for R.
About-
Rob J Hyndman is Pro­fessor of Stat­ist­ics in the Depart­ment of Eco­no­met­rics and Busi­ness Stat­ist­ics at Mon­ash Uni­ver­sity and Dir­ector of the Mon­ash Uni­ver­sity Busi­ness & Eco­nomic Fore­cast­ing Unit. He is also Editor-in-Chief of the Inter­na­tional Journal of Fore­cast­ing and a Dir­ector of the Inter­na­tional Insti­tute of Fore­casters. Rob is the author of over 100 research papers in stat­ist­ical sci­ence. In 2007, he received the Moran medal from the Aus­tralian Academy of Sci­ence for his con­tri­bu­tions to stat­ist­ical research, espe­cially in the area of stat­ist­ical fore­cast­ing. For 25 years, Rob has main­tained an act­ive con­sult­ing prac­tice, assist­ing hun­dreds of com­pan­ies and organ­iz­a­tions. His recent con­sult­ing work has involved fore­cast­ing elec­tri­city demand, tour­ism demand, the Aus­tralian gov­ern­ment health budget and case volume at a US call centre.

Little Book of R For Time Series #rstats

I loved this book. Only 75 pages and very lucidly written and available on Github for free. Nice job by Avril Coghlan a.coghlan@ucc.ie

.Of course My usual suspects for Time Series Readings are -

1) The seminal pdf (2008!!) by  a certain Prof Hyndman

http://www.maths.anu.edu.au/~johnm/courses/r/ASC2008/pdf/Rtimeseries-ohp.pdf

 

2) JSS Paper -Automatic Time Series Forecasting: The forecast
Package for R http://www.jstatsoft.org/v27/i03/paper

3) The CRAN View http://cran.r-project.org/web/views/TimeSeries.html

This is cluttered and getting more and more cluttered. Some help on helping recent converts to R, especially in the field of corporate forecasting or time series for business analytics would really help.

Avril does an awesome job with this curiously named ( ;) ) booklet  at http://a-little-book-of-r-for-time-series.readthedocs.org/en/latest/src/timeseries.html

Big Noise on Big Data

Increasingly Big Data is used in writing where Business Analytics was used, and data mining is thrown in as a word just to keep liberal art majors happy that they are reading a scientific article.

Some Big Words I have noticed in my Short life-

Big Data? High Performance Analytics? High Performance Computing ? Cloud Computing? Time Sharing? Data Mining? SEMMA? CRISP-DM? KDD? Business Intelligence? Business Analytics and Optimization? (pick a card and any card)

(or Just Moore’s Law catching up with the analytics)

Some examples-

Replace Big Data with Analytics in these articles and let me know if you can make out much of a difference

  • Big Data on Campus

http://www.nytimes.com/2012/07/22/education/edlife/colleges-awakening-to-the-opportunities-of-data-mining.html

  • From the man who famously said BI is dead, is now burying Business Analytics within the new buzzword , SAS CMO Jim Davis

How to transform big data from an obstacle into an asset

http://blogs.sas.com/content/corneroffice/2012/07/22/how-to-transform-big-data-from-an-obstacle-into-an-asset/

(Related- Is big data over hyped? by Jim Davis

http://www.sas.com/knowledge-exchange/business-analytics/featured/is-big-data-over-hyped/index.html )

I am sure by 2015, Jim Davis, NYT and the merry men of analytics will find some other buzzwords to rally the troops. In the meantime, let me throw out the flag and call it Big  .

Follow

Get every new post delivered to your Inbox.

Join 839 other followers