Home » Interviews » M2009 Interview Peter Pawlowski AsterData

M2009 Interview Peter Pawlowski AsterData

R in the Cloud

R for Quantitative Finance

Software

Train in R

Here is an interview with Peter Pawlowski, who is the MTS for Data Mining at Aster Data. I ran into Peter at his booth at AsterData during M2009, and followed up with an email interview. Also included is a presentation by him of which he was a co-author.

Ajay- Describe your career in Science leading up till today.

Peter- Went to Stanford, where I got a BS & MS in Computer Science. I did some work on automated bug-finding tools while at Stanford.
( Note- that sums up the career of almost 60 % of CS scientists)

Ajay- How is life working at Aster Data- what are the challenges and the great stuff

Peter- Working at Aster is great fun, due to the sheer breadth and variety of the technical challenges. We have problems to solve in the optimization, languages, networking, databases, operating systems, etc. It’s been great to think about problems end-to-end & consider the impact of a change on all aspects of the system. I worked on SQL/MR in particular, which had lots of interesting challenges: how do you define the API? how do you integrate with SQL? how do you make it run fast? how do you make it scale?

Ajay- Do you think Universities offer adequate preparation for in demand skills like Mapreduce, Hadoop and Business Intelligence

Peter-   Probably not BI–I learned everything I know about BI while at Aster. In terms of M/R, it’d be useful to have more hands-on experience with distributed system which at school. We read the MapReduce paper but didn’t get a chance to actually play with M/R. I think that sort of exposure would be useful. We recently made our software available to some students taking a data mining class at Stanford, and they came up with some fascinating use cases for our system, esp. around the Netflix challenge dataset.

Ajay- Describe some of the recent engineering products that you have worked with at Aster

Peter-  SQL/MR is the main aspects of nCluster that i’ve worked with–interesting challenged described in #2.

Ajay- All BI companies claim to crunch data the fastest at the lowest price at highest quality as per their marketing brochure- How would you validate your product’s performance scientifically and transparently.

Peter- I’ve found that the hardest part of judging performance is to come up with a realistic workload. There are public benchmarks out there, but they may or may not reflect the kinds of workloads that our customers want to run. Our goal is to make our customers’ experience as good as possible, so we focus on speeding up the sorts of workloads they ask about.
And here is a presentation at Slideshare.net on more of what Peter works on.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Predictive Analytics- The Book

Conferences

Books

Follow

Get every new post delivered to your Inbox.

Join 745 other followers